STT 872, 867-868 Fall Preliminary Examination Wednesday, August 26, 2015 12:30 - 5:30 pm

1. Let Y have Gamma distribution $\Gamma(m,\theta)$, i.e. the density is $f(y) = \frac{y^{m-1}e^{-\frac{y}{\theta}}}{\Gamma(m)\theta^m}$ for y > 0 and 0 otherwise. Prove that $\mathbb{E}Y^r = \frac{\theta^r \Gamma(m+r)}{\Gamma(m)}, r > -m.$

2. Let $X_1, ..., X_n$ be iid from the density $\lambda x^{\lambda-1}, \lambda > 0, 0 < x < 1$.

(a) Find a complete and sufficient statistics for λ based on $X_1, ..., X_n$.

(b) Let $q(\lambda) = \lambda^{-2}$. Formulate the two methods of finding UMVUE and use one of them to find it for $g(\lambda)$.

(c) Show that $\frac{-n}{\sum_{i=1}^{n} lnX_i}$ is the MLE of λ . Compute its asymptotical variance, n > 1.

(d) Find the MLE of λ^{-2} . Using delta-method find its asymptotical variance, n > 1.

(e) Let $g(\lambda) = \lambda^{-2}$ and let the loss function be $\mathbb{E}\{(\lambda^2 \delta(X_1, ..., X_n) - 1)^2\}$. Using an exponential

prior with parameter $\mu > 0$, $E(\mu)$, find a Bayes estimator of $g(\lambda)$, n > 1. Hint: $\Lambda \sim \mu e^{-\mu\lambda}$, $\lambda > 0$. (f) Show that the loss of the Bayes estimator in (e) is $\frac{2(2n+5)}{(n+3)(n+4)}$. Which conditions on μ would make the estimator in (e) minimax. Are they satisfied? n > 1.

(g) Formulate the conditions needed for an estimator of λ^{-2} to be asymptotically efficient. Are they satisfied for the Bayes estimator in (e) with $\mu = \sqrt{n}$.

(h) Under the loss $\mathbb{E}\{(\lambda^2 \delta(X_1, ..., X_n) - 1)^2\}$, show that the MLE of λ^{-2} is inadmissible when n is large enough.

(i) Derive a UMP unbiased test of size $\alpha \in (0,1)$ for testing $H: \lambda = 2$ vs $K: \lambda \neq 2$ in the fullest possible detail, n > 1.

3. Let $X_1, ..., X_n$ be iid from the density $1/\tau$ for $\theta \le x \le \theta + \tau$ and 0 otherwise.

- (a) Construct the MRE estimator of τ under the loss $\mathbb{E}(\frac{\delta}{\tau}-1)^2$, n > 2. (b) Construct the MRE estimator of θ under the loss $\mathbb{E}(\delta-\theta)^2$, n > 2.
- (c) Is the estimator in (b) consistent in probability for θ ?

(d) Suppose $\tau > 1$ is known. Derive a UMP test of size $\alpha \in (0,1)$ for testing $H: \theta = 1$ vs $K: \theta < 1$ in the fullest possible detail.

(e) Derive the power of the test in (d).

4. Consider the following linear regression model

$$Y_{ij} = \mu + \theta_i + (\gamma + \beta_i)x_{ij} + e_{ij} \text{ where } e_{ij} \stackrel{iid}{\sim} N(0, \sigma^2)$$
(1)

for i = 1, 2, 3 and $j = 1, \dots, 4$, where x_{ij} are constants that are unequal to each other.

- (a) Find the least square (LS) estimator of $\mu + \theta_1$. Can you find another unbiased estimator which has smaller variance than the LS estimator? Why or why not?
- (b) Under the constraint $\beta_1 = \beta_2 = \beta_3$, find the best linear unbiased estimator of $\mu + \theta_1$.
- (c) Give the variance of the LS estimator of $\mu + \theta_1$ in part (a) and the variance of the BLUE in $\mu + \theta_1$ in part (b). Which one has the smaller variance? Why?

- (d) Construct an F-test for the hypothesis $H_0: \theta_1 = \theta_2 = \theta_3$ vs $H_1:$ on the equality is not true in H_0 under model (1). Please provide the F-statistic and its distribution under H_0 , and an α level rejection region.
- (e) Under the constraint $\beta_1 = \beta_2 = \beta_3$, construct an F-test for testing the hypothesis in part (d). Please provide the F-statistic and its distribution under H_0 , and an α level rejection region.

5. We still consider model (1) given in question 4 but assume that θ_i and β_i are random effects. More specifically, we assume the following mixed effects model:

$$Y_{ij} = \mu + \theta_i + (\gamma + \beta_i)x_{ij} + e_{ij} \tag{2}$$

for i = 1, 2, 3 and $j = 1, \dots, 4$. In model (2), assume that μ and γ are fixed effects. In addition, assume that $\theta_i \stackrel{iid}{\sim} N(0, \sigma_{\theta}^2)$, $\beta_i \stackrel{iid}{\sim} N(0, \sigma_{\beta}^2)$ and $e_{ij} \stackrel{iid}{\sim} N(0, \sigma^2)$. The random effects θ_i, β_i and random errors e_{ij} are independent. Assume that the variance ratios $\sigma_{\alpha}^2/\sigma^2$ and $\sigma_{\beta}^2/\sigma^2$ are known.

- (a) Give the best linear unbiased prediction for $\mu + \theta_1$.
- (b) Derive the restricted maximum likelihood estimator of σ^2 .
- (c) Please provide a 1α prediction interval for $\mu + \theta_1$.