
      Preliminary Exam: Probability.  
 
Time:  10:00am - 3:00pm, Friday, August 25, 2017. 
 
Your goal should be to demonstrate mastery of probability theory and maturity of thought. Your 
arguments should be clear, careful and complete. 
The exam consists of six main problems, each with several steps designed to help you in the overall 
solution.  
 
Important:  If you cannot solve a certain part of a problem, you still may use its conclusion in a later 
part!  
 
Please make sure to apply the following guidelines: 
 

1. On each page you turn in, write your assigned code number.  Don’t write your name on any 
page. 
 

2. Start each problem on a new page. 

 

 

  



Prelim in Probability August 2017 

Problem 1.   

a.   Let 𝑋, 𝑌 be identically distributed random variables with 𝑃(𝑋 = 𝑘) =
1

3
, 𝑘 = −1, 0, 1. 

(i)     Assume that  𝑋, 𝑌 are independent.  Find the distribution of 𝑋 + 𝑌. 

(ii).   Find a joint distribution of 𝑋, 𝑌 so that 𝑋 + 𝑌 will have the same distribution as in part (i) 

but here  𝑋, 𝑌 are not independent.  You can exhibit the joint distribution of 𝑋, 𝑌 in a 3x3 table. 

b.   For any random variable 𝑊 we let 𝜑𝑊(𝑡), 𝑡 ∈ ℛ denote its characteristic function. 

(i)    Prove by using Fubini Theorem that if 𝑋, 𝑌 are independent then  𝜑𝑋+𝑌(𝑡) = 𝜑𝑋(𝑡)𝜑𝑌(𝑡),

𝑡 ∈ ℛ 

(ii)    Is it true that 𝜑𝑋+𝑌(𝑡) = 𝜑𝑋(𝑡)𝜑𝑌(𝑡), 𝑡 ∈ ℛ implies that 𝑋, 𝑌 are independent?    If your 

answer is positive then provide a proof; otherwise, provide a counterexample. 

c.  Use the multivariate inversion formula of characteristic function to prove that if  

 𝜑𝑋,𝑌(𝑠, 𝑡) = 𝜑𝑋(𝑠)𝜑𝑌(𝑡), 𝑠, 𝑡 ∈ ℛ  then   𝑋, 𝑌 are independent, where 

 𝜑𝑋,𝑌(𝑠, 𝑡) ≡ 𝐸(exp{𝑖(𝑠𝑋 + 𝑡𝑌)}), 𝑠, 𝑡 ∈ ℛ  and  𝑖 = √−1 .   

Hint: Recall the inversion formula in the 2-dimensional case: 

𝑃((𝑋, 𝑌) ∈ 𝐴) = lim
𝑇→∞

1

(2𝜋)2
∫ ∫ 𝜓(𝑠, 𝑡)𝜑𝑋,𝑌(𝑠, 𝑡)𝑑𝑠𝑑𝑡

𝑇

−𝑇

𝑇

−𝑇
, 

where 𝐴 = [𝑎1, 𝑏1]𝑥 [𝑎2, 𝑏2],  𝑎𝑖 < 𝑏𝑖, 𝑖 = 1, 2, 

𝑃(𝑋 = 𝑎1) = 𝑃(𝑋 = 𝑏1) = 𝑃(𝑌 = 𝑎2) = 𝑃(𝑌 = 𝑏2) = 0, and 

 𝜓(𝑠, 𝑡) =
(exp(−𝑖𝑠𝑎1)−exp(−𝑖𝑠𝑏1)) ∙ (exp(−𝑖𝑡𝑎2)−exp(−𝑖𝑡𝑏2))

−𝑠𝑡
  



Problem 2  

Let {𝑊(𝑡):  0 ≤ 𝑡 ≤ 1}  denote a standard Brownian motion.  In this problem 

  0 < 𝑠 < 𝑢 < 𝑡 < 1 are fixed.  Denote  𝑊(𝑠, 𝑡) ≡ 𝑊(𝑡) −𝑊(𝑠).    

a.   Let 𝑌 be a symmetric random variable, namely:  𝑌 = −𝑌 , in distribution.  Assume that 

𝑃(𝑌 = 0) = 0  (this assumption is only for the sake of simplicity) 

(i)   Prove that {sign(𝑌), |𝑌|} are independent, where sign(𝑌) ≡ {

+1   𝑖𝑓  𝑌 > 0
−1   𝑖𝑓  𝑌 < 0
0    𝑖𝑓  𝑌 = 0

    

(ii)    Prove that:  {  𝑊(𝑠, 𝑢), |𝑊(𝑢, 𝑡)|, sign(𝑊(𝑢, 𝑡))}  are independent. 

 

b.    Let  𝒢 ≡  𝜎{𝑊(𝑠, 𝑢), |𝑊(𝑢, 𝑡)|}  and  ℱ ≡ 𝜎{|𝑊(𝑠, 𝑢)|, |𝑊(𝑢, 𝑡)|}.   

(i)  Find the conditional expectations  𝐸𝒢(𝑊(𝑠, 𝑢)𝑊(𝑢, 𝑡))  and  𝐸ℱ(𝑊(𝑠, 𝑢)𝑊(𝑢, 𝑡)).    

(ii)   Find  𝐸ℱ([𝑊(𝑠, 𝑡)]
2).   Hint: 𝜎{|𝑋|} = 𝜎{𝑋2}   for any random variable 𝑋.   

c.    Let 𝑠 ≡ 𝑢0  < 𝑢1 < ⋯ < 𝑢𝑑−1 < 𝑢𝑑 ≡ 𝑡.  Find the conditional expectation:  

𝐸ℋ(𝑠𝑖𝑔𝑛(𝑊(𝑠, 𝑡))), where  ℋ ≡ 𝜎{|𝑊(𝑢0,𝑢1)|, |𝑊(𝑢1,𝑢2)|,… , |𝑊(𝑢𝑑−1,𝑢𝑑)|}. 

Hints: Recall that {−𝑊(𝑢):  0 ≤ 𝑢 ≤ 1}  is a standard Brownian motion as well.   Also,  

|(−𝑊)(𝑎, 𝑏)| = |𝑊(𝑎, 𝑏)|, 0 < 𝑎 < 𝑏 < 1. 

Remark. This problem leads to an application of backwards martingales to quadratic variation of 

Brownian motion. 

  



Problem 3.  

 Let (ℛ2, ℬ(ℛ2), 𝑃) be a probability space.  Let 𝑋(𝑥, 𝑦) = 𝑥, 𝑌(𝑥, 𝑦) = 𝑦, (𝑥, 𝑦) ∈ ℛ2 be the 

coordinate maps and let  ℱ = 𝜎(𝑋).  We assume that (𝑋, 𝑌) has a joint density which is denoted by  

𝑓(𝑥, 𝑦), (𝑥, 𝑦) ∈ ℛ2  and let 𝑓𝑋(𝑥), 𝑥 ∈ ℛ denote the density of 𝑋. 

a. Let  𝐴 ∈ ℱ  and let   �̃� = {𝑋(𝑎):  𝑎 ∈ 𝐴}.   Prove that  𝐴 = �̃�x ℛ. 
 

b. Let 𝑍 = 𝑧(𝑋, 𝑌)  be a random variable where 𝑧: ℛ2 →  ℛ is measurable.   We assume 

 

  𝐸(|𝑍|) < ∞.  Let 𝐻  be a random variable defined by   

𝐻(𝑥0, 𝑦0) =
∫ 𝑧(𝑥0,𝑦)𝑓(𝑥0,𝑦)𝑑𝑦
∞

𝑦=−∞

𝑓𝑋(𝑥0)
 , (𝑥0, 𝑦0) ∈ ℛ

2
.      

       Prove: 

(i) 𝐻 ∈ ℱ 

(ii) 𝐸(𝑍; 𝐴) = 𝐸(𝐻;𝐴), 𝐴 ∈  ℱ 

(iii) What is the relationship between 𝐻 and  𝐸ℱ(𝑍) ? 

 

c. Let  {𝑃(𝑥0,𝑦0): (𝑥0, 𝑦0) ∈ ℛ
2}  represent the  regular conditional probability  given ℱ.    

Let 𝐵 ∈ ℬ(ℛ2) and let  𝐵𝑥0 = {𝑦 ∈  ℛ:  (𝑥0, 𝑦) ∈ 𝐵} .  Express  𝑃(𝑥0,𝑦0)(𝐵)  by using  𝑓(𝑥, 𝑦), 

𝑓𝑋(𝑥) and 𝐵𝑥0 . 

  



Problem 4.  

Let  {  𝑍𝑘}, 𝑘 = 1, 2, …  be identically distributed sequence of standard normal random variables.  

a.  Prove that for each 𝜖 > 0:    limsup
𝑘→∞

|𝑍𝑘|

√ln (𝑘)
≤ √2 + 𝜖, a. s. [ ln denotes the natural logarithm].   

Hint: Recall the usual estimate for the tail of standard normal  𝑃(|𝑍| > 𝑥) ≤ 𝑒
−𝑥2

2 , 𝑥 > 1. 

 

b.  For the rest of the problem we assume that {  𝑍𝑘} are also independent.  Let {𝑎𝑘}𝑘≥1, {𝑏𝑘}𝑘≥1 be 

sequences of real numbers with ∑ 𝑎𝑘
2 + 𝑏𝑘

2∞
𝑘=1 < ∞.   

(i)   Prove that  {∑ 𝑎𝑘𝑍𝑘 , ℱ𝑛}, 𝑛 ≥ 1   
𝑛
𝑘=1 is a martingale where ℱ𝑛 = 𝜎{𝑍𝑘 , 𝑘 = 1,… , 𝑛}, and this 

martingale converges both a.s. and in 𝐿2 to ∑ 𝑎𝑘𝑍𝑘
∞
𝑘=1 .   

(ii)  calculate  COV(∑ 𝑎𝑘𝑍𝑘
∞
𝑘=1 , ∑ 𝑏𝑘𝑍𝑘

∞
𝑘=1 ). 

(iii)   Identify the distribution of ∑ 𝑎𝑘𝑍𝑘
∞
𝑘=1  by using characteristic functions. 

 

  c.   Let {𝑠𝑘(𝑡)}𝑘≥1 be a sequence of deterministic (non-random) functions defined on [0,1].  Assume 

that the process  𝐵(𝑡) ≡ ∑ 𝑠𝑘(𝑡)𝑍𝑘
∞
𝑘=1 , is well defined on [0,1]  , in the sense that for each  𝑡 ∈ [0,1]   

the convergence of the random series is both a.s. and 𝐿2.   

(i).  Express the COV(𝐵(𝑢), 𝐵(𝑣)) , 0 ≤ 𝑢, 𝑣 ≤ 1,  in terms of {𝑠𝑘(𝑡)}𝑘≥1 .  In particular, if our goal is that 

𝐵 will be a standard Brownian motion (ignoring continuity of sample paths for now) what should 

{𝑠𝑘(𝑡)}𝑘≥1  satisfy? 

(ii)  Let 𝑠𝑘
∗=max
0≤𝑡≤1

{ | 𝑠𝑘(𝑡)|}.  Assume that  ∑ 𝑠𝑘
∗√ln (𝑘)∞

𝑘=1 < ∞.  Prove by using part a that  

                                                     sup
0≤𝑡≤1

{| ∑ 𝑠𝑘(𝑡)𝑍𝑘|}
∞
𝑘=𝑛 𝑛→∞

→   0, a.s.   

Remark:  This means that the convergence of 𝐵(𝑡) ≡ ∑ 𝑠𝑘(𝑡)𝑍𝑘
∞
𝑘=1  is uniformly in 𝑡, a.s. If the functions 

{𝑠𝑘(𝑡)}𝑘≥1 are continuous then 𝐵 has continuous sample paths. 

  



Problem 5.  Assume that {𝑋𝑛}𝑛≥1 is uniformly integrable and that 𝑋𝑛 → 𝑋, a. s.  as 𝑛 → ∞.  Let {ℱ𝑛}𝑛≥1 

and ℱ be σ-algebras.  

a. Prove that 𝐸(|𝑋|) < ∞. 

 

b. Prove that 𝐸ℱ𝑛(𝑋𝑛) → 𝐸ℱ(𝑋) in 𝐿1  as 𝑛 → ∞  (namely,  𝐸(|𝐸ℱ𝑛(𝑋𝑛) − 𝐸ℱ(𝑋)|) → 0 as 𝑛 → ∞) 

in the following 2 cases: 

(i) if  ℱ𝑛 ↑  ℱ 

(ii) if  ℱ𝑛 ↓  ℱ 

         Hint:  |𝑎 − 𝑏| ≤ |𝑎 − 𝑐| + |𝑐 − 𝑏| 

c.  Is it true that under the assumptions of this problem we also have:  𝐸ℱ𝑛(𝑋𝑛) → 𝐸ℱ(𝑋), a.s.  

as → ∞ ? If your answer is positive then quote an appropriate theorem.  If your answer is 

negative then modify our assumptions so that a.s. convergence will hold.  

  



Problem 6.   Let {𝑋𝑛,𝑘} 1≤𝑘≤𝑛 and  {𝑌𝑛,𝑘} 1≤𝑘≤𝑛  , 𝑛 ≥ 1 be triangular arrays that are 

defined on the same probability space, For each fixed  𝑛 ≥ 1, the random variables 

{𝑋𝑛,𝑘, 𝑌𝑛,𝑘 } 1≤𝑘≤𝑛  are independent and {𝑋𝑛,𝑘} 1≤𝑘≤𝑛 and  {𝑌𝑛,𝑘} 1≤𝑘≤𝑛   are both 

identically distributed. Finally, let 𝑆𝑛 = ∑ 𝑋𝑛,𝑘
𝑛
𝑘=1   and 𝑇𝑛 = ∑ 𝑌𝑛,𝑘

𝑛
𝑘=1 , 𝑛 ≥ 1. 

 

a. Assume  𝑃 (𝑋𝑛,1 =
1

√𝑛
) =

1

2
= 𝑃 (𝑋𝑛,1 =

−1

√𝑛
).  Prove that 𝑆𝑛 → 𝑆 , in distribution and 

identify the distribution of  𝑆. 

 

b. Let  𝑃(𝑌𝑛,1 = −1) = 𝑝𝑛, 𝑃(𝑌𝑛,1 = 1) = 𝑞𝑛 𝑎𝑛𝑑 𝑃(𝑌𝑛,1 = 0) = 1 − 𝑝𝑛 − 𝑞𝑛. Also, 

we assume that:  𝑛𝑝𝑛 → 𝜆1 > 0 and 𝑛𝑞𝑛 → 𝜆2 > 0, both limits as 𝑛 → ∞.  

 

(i) Write down  𝜑𝑇𝑛(𝑡), 𝑡 ∈ ℛ ( the characteristic function of 𝑇𝑛) 

(ii) Prove that  𝜑𝑇𝑛(𝑡) → 𝜑(𝑡), 𝑡 ∈ ℛ  as 𝑛 → ∞. Hint: Use the lemma that deals with 

convergence of a sequence of products to an exponent. 

(iii) It follows from (ii) that 𝑇𝑛 → 𝑇, in distribution.  Can you identify the 

distribution of 𝑇? 

 

c. Does the sequence ∑ 𝑋𝑛,𝑘 + 𝑌𝑛,𝑘
𝑛
𝑘=1   converges in distribution as 𝑛 → ∞ ?  If your 

answer is positive then identify the limit distribution. 


