
   Preliminary Exam: Probability.  
 
Time:  10:00am - 3:00pm, Friday, August 26, 2016. 
 
Your goal on this exam should be to demonstrate mastery of probability theory and maturity of 
thought. Your arguments should be clear, careful and complete. 
The exam consists of six main problems, each with several steps designed to help you in the 
overall solution.  
 
Important:  If you cannot solve a certain part of a problem, you still may use its conclusion in a 
later part!  
 
Please make sure to apply the following guidelines: 
 

1. On each page you turn in, write your assigned code number.  Don’t write your name on 
any page. 
 

2. Start each problem on a new page. 

 

 

3. Write only on one side of a page. 

  



Problem   1.   Let 𝑋, 𝑌 be random variables defined on the same probability space.  We assume 
 𝐸(𝑋2) + 𝐸(𝑌2) < ∞.   Let 𝑋𝑎,𝑏 ≡ 𝑎 + 𝑏𝑋, where (𝑎, 𝑏) ∈ 𝑅2. 

a.   Express (𝑎∗, 𝑏∗) ∈ 𝑅2 in terms of 𝐸(𝑋), 𝐸(𝑌), 𝑉𝑎𝑟(𝑋), 𝑉𝑎𝑟(𝑌), 𝐶𝑜𝑣(𝑋, 𝑌), where (𝑎∗, 𝑏∗) 

satisfy 

{
𝐸(𝑌 − 𝑋𝑎∗,𝑏∗) = 0

𝐸 ((𝑌 − 𝑋𝑎∗,𝑏∗)𝑋) = 0.
 

b.   (i)  Calculate 𝐸[(𝑌 − 𝑋𝑎∗,𝑏∗)(𝑋𝑎∗,𝑏∗ − 𝑋𝑎,𝑏)], where (𝑎, 𝑏) ∈ 𝑅2 and (𝑎∗, 𝑏∗) is defined in 

part a. 

(ii)  Prove by using (i):  min
(𝑎,𝑏)∈𝑅2

𝐸 [(𝑌 − 𝑋𝑎,𝑏)
2

] = 𝐸 [(𝑌 − 𝑋𝑎∗,𝑏∗)
2

]  . 

c.    Let  𝒳 be a family of random variables defined by 𝒳 ≡ {W:  𝐸(𝑊2) < ∞  and 𝑊 ∈ 𝜎{𝑋}} , 

where  𝜎{𝑋}   is the 𝜎 –algebra generated by 𝑋.  Calculate 𝐸[(𝑌 − 𝐸𝜎{𝑋}(𝑌))(𝐸𝜎{𝑋}(𝑌) − 𝑊)],  

where 𝑊 ∈ 𝒳.  Use this calculation to find 𝑊∗ ∈ 𝒳 that solves : 

 min
𝑊∈𝒳

𝐸[(𝑌 − 𝑊)2] = 𝐸[(𝑌 − 𝑊∗)2]. 

 

Problem 2.      Let {𝑋, 𝑋𝑚:   𝑚 = 1,2, … } be a sequence of independent and identically 

distributed random variables.  Let 𝑆𝑛 = ∑  𝑋𝑚, 𝑛 ≥ 1𝑛
𝑚=1 . 

a.   Let 𝑏𝑛 > 0, 𝑎𝑛 = 𝑛 ∙ 𝐸(𝑋: |𝑋| ≤ 𝑏𝑛), 𝑛 ≥ 1.  Prove for each 𝜀 > 0, 𝑛 ≥ 1  

   𝑃 (|
𝑆𝑛−𝑎𝑛

𝑏𝑛
| > 𝜀) ≤ 𝑛𝑃(|𝑋| ≥ 𝑏𝑛) +

𝑛∙𝐸(𝑋2:|𝑋|≤𝑏𝑛)

𝜀2𝑏𝑛
2     .   

 

b.   Assume that the distribution of   𝑋 is specified by    𝑃(𝑋 = 2𝑘) = 2−𝑘 , 𝑘 ≥ 1 . 

Use part a to show that  

 
𝑆𝑛

𝑛∙log2(𝑛)
→ 1  in probability as 𝑛 → ∞.     

Hint: In order to streamline the calculations you may use , without proof, the following 2 

inequalities that hold for each  𝑥 > 0 :  

 (i)  ∑ 2−𝑘1{2𝑘>𝑥} ≤
2

𝑥
∞
𝑘=1   ,    (ii) ∑ 2𝑘1{2𝑘<𝑥} ≤ 2𝑥∞

𝑘=1 .    

 

 



Problem 3.  Let {𝑋𝑘:   𝑘 = 1,2, … } be a sequence of independent random variables.  We assume 

that 𝐸(𝑋𝑘) = 0, and  𝐸[(𝑋𝑘
−)2] < ∞, 𝑘 = 1, 2, …where 𝑋𝑘

− = max {−𝑋𝑘, 0}, 𝑋𝑘
+ = max {𝑋𝑘, 0}. 

a.   Prove that  𝐸 (exp {𝑋𝑘 −
 (𝑋𝑘

+)
2

2
}) ≤ 1 +

 𝐸[(𝑋𝑘
−)2]

2
,  𝑘 = 1, 2, … 

Hint:  You may want to use the following inequalities without proving them 

(i)     exp{𝑦} ≤ 1 + 𝑦 +
 𝑦2

2
, 𝑦 < 0 

(ii) exp {𝑦 −
 𝑦2

2
} ≤ 1 + 𝑦, 𝑦 > 0    

   

b. Prove that  𝐸 (exp {𝑋𝑘 −
 (𝑋𝑘

+)
2

+ 𝐸[(𝑋𝑘
−)2]

2
}) ≤ 1 ,  𝑘 = 1, 2, … 

 

c. Prove that   { exp {𝑆𝑛 −
𝑊𝑛

2

2
}, ℱ𝑛}, 𝑛 = 1, 2, …  is a super-martingale, where 

𝑆𝑛 = ∑  𝑋𝑘 , 𝑛 ≥ 1𝑛
𝑘=1 ,   𝑊𝑛

2 ≡ ∑  (𝑋𝑘
+)2𝑛

𝑘=1 + ∑ 𝐸[(𝑋𝑘
−)2𝑛

𝑘=1   and 

  ℱ𝑛 = 𝜎{𝑋𝑘:   𝑘 = 1, … , 𝑛} . 

 

Problem 4. Let { 𝑋𝑚:   𝑚 = 1,2, … } be a sequence of independent  and symmetric random 

variables ( i.e.  𝑋𝑚 = − 𝑋𝑚, 𝑚 ≥ 1,  in distribution).  Let  𝑆𝑛 = ∑  𝑋𝑚, 𝑛 ≥ 1𝑛
𝑚=1 .  

a.   (i) Prove that any random variable  𝑋 is symmetric if and only if its characteristic function is 

real valued. 

(ii) Prove that   𝑆𝑛, 𝑛 ≥ 1  is symmetric. 

For the rest of the problem we assume that 𝑆𝑛 → 𝑆  in probability as 𝑛 → ∞.  Also, all the 

statements in what follows are for each 𝜀 > 0. 

b.  Use Levy inequality  (Recall:   𝑃 ( max
1≤𝑘≤𝑛

|𝑆𝑘| > 𝑡) ≤ 2𝑃(|𝑆𝑛| > 𝑡), 𝑡 > 0, 𝑛 ≥ 1) in order to 

prove:    𝑃(sup
𝑛>𝑀

{|𝑆𝑛 − 𝑆𝑀|} > 𝜀) → 0 as 𝑀 → ∞ . 

Hint:  Prove first  that    sup
𝑛>𝑀

𝑃(|𝑆𝑛 − 𝑆𝑀| > 𝜀) → 0 as 𝑀 → ∞.   

c.   Show that in fact 𝑆𝑛 → 𝑆  a.s.  as 𝑛 → ∞.     

Hint: Show first that part b implies:  𝑃( sup
𝑛,𝑚>𝑀

{|𝑆𝑛 − 𝑆𝑚|} > 𝜀) → 0 as 𝑀 → ∞  .  Then consider 

the sequence   𝑎𝑀 ≡ sup
𝑛,𝑚>𝑀

{|𝑆𝑛 − 𝑆𝑚|}, 𝑀 = 1,2, … Is it monotone  a.s. ?  

 



Problem 5.  Let {𝑋𝑛,𝑘:  1 ≤ 𝑘 ≤ 𝑛, 𝑛 = 1, … }  and  be a triangle arrays of row-wise independent 

random variables with 𝐸(𝑋𝑛,𝑘) = 0 . We assume:  

(i) For each 𝜀 > 0,  ∑ 𝐸(𝑋𝑛,𝑘
2 :  |𝑋𝑛,𝑘| > 𝜀) → 0 as𝑛

𝑘=1  𝑛 → ∞ 

(ii) There exist non random  0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑑 = 1 so that for each 1 ≤ 𝑚 ≤ 𝑑 

∑ 𝐸(𝑋𝑛,𝑘
2   ) → 𝑡𝑚  , as

[𝑛𝑡𝑚]
𝑘=1  𝑛 → ∞, where  [𝑡] is the largest integer that is less or equal to 𝑡. 

a.    Prove that for each 1 ≤ 𝑚 ≤ 𝑑:   

∑ 𝑋𝑛,𝑘 → 𝑁(0, 𝑡𝑚 − 𝑡𝑚−1)   , as

[𝑛𝑡𝑚]

[𝑛𝑡𝑚−1]+1

 𝑛 → ∞ 

b.  Prove the convergence  in distribution, as 𝑛 → ∞,  of the following  d- dimensional random 

vectors:   (∑ 𝑋𝑛,𝑘:  𝑚 = 1, … , 𝑑)
[𝑛𝑡𝑚]
[𝑛𝑡𝑚−1]+1  .  What is the characteristic function of the limit 

distribution?    

c.   Prove that  (∑ 𝑋𝑛,𝑘:  𝑚 = 1, … , 𝑑) → (𝑊(
[𝑛𝑡𝑚]
1 𝑡𝑚):  𝑚 = 1, … , 𝑑)  in distribution as 𝑛 → ∞,  

where {𝑊(𝑡):  𝑡 ≥ 0} is a standard Brownian motion. 

 

Problem 6.  Let 𝜇, 𝛾 be 2 probability measures on the space ( (0, 1], ℬ) where ℬ denote the Borel 

𝜎 − algebra on (0, 1].  Let 𝜌 =
𝜇+𝛾 

2
  and assume that 𝜌(𝐼𝑛,𝑘) > 0, where 𝐼𝑛,𝑘 ≡ (

𝑘−1

2𝑛 ,
𝑘

2𝑛].  Here 

and throughout  𝑘 = 1, … , 2𝑛, 𝑛 = 0, 1, ….   Let  𝑋𝑛(𝑡) ≡
𝜇(𝐼𝑛,𝑘)

𝜌(𝐼𝑛,𝑘)
  if 𝑡 ∈ 𝐼𝑛,𝑘.   Prove the 

following:  

a. (i)   0 ≤ 𝑋𝑛 ≤ 2, 𝑛 ≥ 1  

 (ii) {𝑋𝑛, ℱ𝑛}, 𝑛 ≥ 1   is a martingale on ( (0, 1], ℬ, 𝜌) , where  ℱ𝑛 ≡ 𝜎{𝐼𝑛,𝑘: 𝑘 = 1, … , 2𝑛} . 

 

b.  (i)     𝑋 = lim𝑛→∞ 𝑋𝑛  exists a.s. with respect to 𝜌.  

(ii)   𝜇(𝐴) = ∫ 𝑋𝑑𝜌, 𝐴 ∈
𝐴

ℬ.   

Hint:  Prove (ii) first for events of the type 𝐴 = 𝐼𝑛,𝑘 , then for   𝐴 ∈ ⋃ ℱ𝑛
∞
𝑛=1   and finally extend 

the result  to 𝐴 ∈  ℬ  by using the 𝜋 − 𝜆 theorem. 

c.   (i) ∫ (2 − 𝑋)𝑑𝜇  
𝐴

= ∫ 𝑋𝑑𝛾, 𝐴 ∈
𝐴

ℬ.  

(ii)   𝛾({𝑋 = 2}) = 0.  


