Large Deviations for Translation Invariant Functionals of Brownian Occupation Times

S.R.S.Varadhan New York University

Michigan State University April 2, 2015

Large Deviations.

Large Deviations. X, {P_ϵ}. P_ϵ → δ_x as ϵ → 0.

Large Deviations.
X, {P_ϵ}. P_ϵ → δ_x as ϵ → 0.
P_ϵ(A) ≃ exp[-¹/_ϵ inf_{x∈A} I(x) + o(¹/_ϵ)]
Lower bound for open sets and upper bound for closed sets.

$$\bullet \log \int \exp[\frac{F(x)}{\epsilon}] dP_{\epsilon} \to \sup_{x} [F(x) - I(x)]$$

$$\epsilon \log \int \exp[\frac{F(x)}{\epsilon}] dP_{\epsilon} \to \sup_{x} [F(x) - I(x)]$$
$$dQ_{\epsilon} = [Z_{\epsilon}]^{-1} \exp[\frac{F(x)}{\epsilon}] dP_{\epsilon}$$

$$\epsilon \log \int \exp[\frac{F(x)}{\epsilon}] dP_{\epsilon} \to \sup_{x} [F(x) - I(x)]$$
$$dQ_{\epsilon} = [Z_{\epsilon}]^{-1} \exp[\frac{F(x)}{\epsilon}] dP_{\epsilon}$$

Where

$$Z_{\epsilon} = \int \exp[\frac{F(x)}{\epsilon}] dP_{\epsilon}$$

$\blacksquare Q_{\epsilon} \to \delta_y$

$Q_{\epsilon} \rightarrow \delta_{y}$ y is the unique point such that $F(y) - I(y) = \sup_{x} [F(x) - I(x)].$

$$\bullet Q_{\epsilon} \to \delta_y$$

y is the unique point such that $F(y) - I(y) = \sup_{x} [F(x) - I(x)].$

For the proof to work out one needs the upper bound to hold for all closed sets.

$$\bullet Q_{\epsilon} \to \delta_y$$

• y is the unique point such that $F(y) - I(y) = \sup_{x} [F(x) - I(x)].$

For the proof to work out one needs the upper bound to hold for all closed sets.

Often one gets local estimates. Pushed to Compact sets.

$$\bullet Q_{\epsilon} \to \delta_y$$

• y is the unique point such that $F(y) - I(y) = \sup_{x} [F(x) - I(x)].$

For the proof to work out one needs the upper bound to hold for all closed sets.

Often one gets local estimates. Pushed to Compact sets.

$$e^{\frac{a}{\epsilon}} + e^{\frac{b}{\epsilon}} = e^{\frac{\max\{a,b\}}{\epsilon} + o(\frac{1}{\epsilon})}$$

Normalized Lebesgue measure is invariant

Normalized Lebesgue measure is invariant

$$L_T = \frac{1}{T} \int_0^T \delta_{x(s)} ds$$

Normalized Lebesgue measure is invariant

$$L_T = \frac{1}{T} \int_0^T \delta_{x(s)} ds$$

 $\mathbf{L}_T(A) = \frac{1}{T} \int_0^T \mathbf{1}_A(x(s)) ds$

Normalized Lebesgue measure is invariant

$$L_T = \frac{1}{T} \int_0^T \delta_{x(s)} ds$$

 $L_T(A) = \frac{1}{T} \int_0^T \mathbf{1}_A(x(s)) ds$ $Q_T \text{ is the distribution of } L_T$

Normalized Lebesgue measure is invariant

$$L_T = \frac{1}{T} \int_0^T \delta_{x(s)} ds$$

 $\mathbf{L}_T(A) = \frac{1}{T} \int_0^T \mathbf{1}_A(x(s)) ds$

• Q_T is the distribution of L_T • $\int \exp[T \int V(x)\mu(dx)]Q_T(d\mu) = E[\exp \int_0^T V(x(s))ds]$

$\blacksquare Q_T$ has a LDP. $d\mu = f(x)dx$

• Q_T has a LDP. $d\mu = f(x)dx$ • $I(\mu) = \frac{1}{8} \int_{S^1} \frac{[f'(x)]^2}{f(x)} dx$

Q_T has a LDP. dµ = f(x)dx I(µ) = ¹/₈ ∫_{S¹} ^{[f'(x)]²}/_{f(x)} dx M(S¹) is compact.

Q_T has a LDP. dµ = f(x)dx I(µ) = ¹/₈ ∫_{S¹} ^{[f'(x)]²}/_{f(x)}dx M(S¹) is compact. If we replace S¹ by R, there is a problem.

• Q_T has a LDP. $d\mu = f(x)dx$ • $I(\mu) = \frac{1}{8} \int_{S^1} \frac{[f'(x)]^2}{f(x)} dx$

- $\mathcal{M}(S^1)$ is compact.
- If we replace S^1 by R, there is a problem.
- **There is no invariant measure. dissipative.**

Can remedy it by compactifying R by adding ∞ .

Can remedy it by compactifying R by adding ∞. Then M becomes M_{≤1}.

Can remedy it by compactifying R by adding ∞. Then M becomes M_{≤1}. I(0) = 0.

Can remedy it by compactifying R by adding ∞. Then M becomes M_{≤1}.

- I(0) = 0.
- $\int V(x)d\mu \text{ with } V(x) \to 0 \text{ as } |x| \to \infty \text{ are OK.}$

- Can remedy it by compactifying R by adding ∞.
 Then M becomes M_{≤1}.
- I(0) = 0.
- $\int V(x)d\mu$ with $V(x) \to 0$ as $|x| \to \infty$ are OK.
- One can compactify space add point at ∞

- Can remedy it by compactifying R by adding ∞.
 Then M becomes M_{≤1}.
- $\blacksquare I(0) = 0.$
- $\int V(x)d\mu$ with $V(x) \to 0$ as $|x| \to \infty$ are OK.
- One can compactify space add point at ∞
- The missing mass is at ∞ .

The rate function is still the same.

The rate function is still the same. $I(f + c\delta_{\infty}) = I(f)$

The rate function is still the same.

$$I(f + c\delta_{\infty}) = I(f)$$

Not good for translation invariant functionals.

The rate function is still the same. I(f + cδ_∞) = I(f)

Not good for translation invariant functionals.

$$Z_T = E[\exp[\frac{1}{T}\int_0^T\int_0^T V(x(s) - x(t))dsdt]]$$

The rate function is still the same.

$$I(f + c\delta_{\infty}) = I(f)$$

Not good for translation invariant functionals.

$$Z_T = E[\exp\left[\frac{1}{T}\int_0^T\int_0^T V(x(s) - x(t))dsdt\right]]$$

 $l = \lim_{T \to \infty} \frac{1}{T} \log Z_T$

The rate function is still the same. $I(f + c\delta_{\infty}) = I(f)$

 ${f O}$

$$Z_T = E\left[\exp\left[\frac{1}{T}\int_0^T\int_0^T V(x(s) - x(t))dsdt\right]\right]$$

$$\ell = \lim_{T \to \infty} \frac{1}{T} \log Z_T$$
$$= \sup_f \left[\int \int V(x - y) f(x) f(y) dx dy - I(f) \right]$$

Brownian Motion in \mathbb{R}^3 .

$$\psi_T(\omega) = \frac{1}{T} \int_0^T \int_0^T \frac{1}{|x(t) - x(s)|} ds dt$$

$$\psi_T(\omega) = \frac{1}{T} \int_0^T \int_0^T \frac{1}{|x(t) - x(s)|} ds dt$$
$$\psi_T(\omega) = T \int \int \frac{1}{|x - y|} L_T(dx) L_T(dy)$$

Large Deviations for Translation Invariant Functionalsof Brownian Occupation Times – p. 9/33

 $\blacksquare Z_T$

$$\psi_T(\omega) = \frac{1}{T} \int_0^T \int_0^T \frac{1}{|x(t) - x(s)|} ds dt$$
$$\psi_T(\omega) = T \int \int \int \frac{1}{|x - y|} L_T(dx) L_T(dy)$$
$$= E[\exp[\psi_T(\omega)]]$$

Large Deviations for Translation Invariant Functionalsof Brownian Occupation Times – p. 9/33

$$\psi_T(\omega) = \frac{1}{T} \int_0^T \int_0^T \frac{1}{|x(t) - x(s)|} ds dt$$
$$\psi_T(\omega) = T \int \int \int \frac{1}{|x - y|} L_T(dx) L_T(dy)$$
$$Z_T = E[\exp[\psi_T(\omega)]]$$
$$dQ_T = \frac{1}{Z_T} \exp[\psi_T(\omega)] dP$$

The problem is translation invariant.

The problem is translation invariant.
Natural space is X = M(R³)/R³

The problem is translation invariant.
Natural space is X = M(R³)/R³
Not compact.

The problem is translation invariant.
Natural space is X = M(R³)/R³
Not compact.
There is local LDP

The problem is translation invariant.
Natural space is X = M(R³)/R³
Not compact.
There is local LDP
P[L_T ≃ fdx] = exp[−TI(f)]

The problem is translation invariant.
Natural space is X = M(R³)/R³
Not compact.
There is local LDP
P[L_T ≃ fdx] = exp[-TI(f)]
I(f) = ¹/₈ ∫ ^{|∇f|²}/_f dx

The variational problem $\sup_{f} \left[\int \frac{1}{|x-y|} f(x) f(y) dx dy - I(f) \right]$

The variational problem $\int \int \frac{1}{1} f(x) f(x) dx dx$

$$\sup_{f} \left[\int \frac{1}{|x-y|} f(x) f(y) dx dy - I(f) \right]$$

Has a unique maximizer. (modulo translation)

The variational problem sup_f [∫ 1/|x-y| f(x)f(y)dxdy - I(f)] Has a unique maximizer. (modulo translation) One expects on X̃ = X/R³, Q_T → δ_f

The variational problem sup_f [∫ 1/|x-y| f(x)f(y)dxdy - I(f)] Has a unique maximizer. (modulo translation) One expects on X̃ = X/R³, Q_T → δ_{f̃} Compactify X̃

The variational problem $\sup_{f} \left[\int \frac{1}{|x-y|} f(x) f(y) dx dy - I(f) \right]$ Has a unique maximizer. (modulo translation) One expects on $\widetilde{\mathcal{X}} = \mathcal{X}/R^3$, $Q_T \to \delta_{\widetilde{f}}$ **Compactify** $\widetilde{\mathcal{X}}$ Identify the compactification.

The variational problem $\sup_{f} \left[\int \frac{1}{|x-y|} f(x) f(y) dx dy - I(f) \right]$ Has a unique maximizer. (modulo translation) • One expects on $\widetilde{\mathcal{X}} = \mathcal{X}/R^3$, $Q_T \to \delta_{\widetilde{f}}$ Compactify $\widetilde{\mathcal{X}}$ Identify the compactification. **Prove the upper and lower bounds at the new points.**

The variational problem

$$\sup_{f} \left[\int \frac{1}{|x-y|} f(x) f(y) dx dy - I(f) \right]$$

Has a unique maximizer. (modulo translation)

One expects on
$$\widetilde{\mathcal{X}} = \mathcal{X}/R^3$$
, $Q_T \to \delta_{\widetilde{f}}$

Compactify \mathcal{X}

Identify the compactification.

Prove the upper and lower bounds at the new points.

Show the supremum now is still attained at the same f.

Joint work with Chiranjib Mukherjee.

Joint work with Chiranjib Mukherjee. *F*(*L_T*).

Joint work with Chiranjib Mukherjee. F(L_T). F(μ) = F(μ * δ_a)

Joint work with Chiranjib Mukherjee. F(L_T). F(μ) = F(μ * δ_a) Examples

Joint work with Chiranjib Mukherjee. $F(L_T)$. $F(\mu) = F(\mu * \delta_a)$ Examples $F(\mu) = \int_{(R^3)^k} f(x_1, x_2, \dots, x_k) \mu(dx_1) \cdots \mu(dx_k)$

Joint work with Chiranjib Mukherjee. $F(L_T).$ $F(\mu) = F(\mu * \delta_a)$ Examples $F(\mu) = \int_{(R^3)^k} f(x_1, x_2, \dots, x_k) \mu(dx_1) \cdots \mu(dx_k)$ $f(x_1 + x, \dots, x_k + x) = f(x_1, x_2, \dots, x_k)$

Joint work with Chiranjib Mukherjee. $\blacksquare F(L_T).$ $\blacksquare F(\mu) = F(\mu * \delta_a)$ **Examples** $F(\mu) = \int_{(R^3)^k} f(x_1, x_2, \dots, x_k) \mu(dx_1) \cdots \mu(dx_k)$ $f(x_1 + x, \dots, x_k + x) = f(x_1, x_2, \dots, x_k)$ $f \to 0 \text{ if } \sup_{i,j} |x_i - x_j| \to \infty$

Joint work with Chiranjib Mukherjee. $\blacksquare F(L_T).$ $\blacksquare F(\mu) = F(\mu * \delta_a)$ **Examples** $F(\mu) = \int_{(R^3)^k} f(x_1, x_2, \dots, x_k) \mu(dx_1) \cdots \mu(dx_k)$ $f(x_1 + x, \dots, x_k + x) = f(x_1, x_2, \dots, x_k)$ $f \to 0 \text{ if } \sup_{i,j} |x_i - x_j| \to \infty$ $\Box \frac{1}{T} \log E[\exp[TF]]$

• How to compactify?

How to compactify?One point compactification is not suitable.

How to compactify? One point compactification is not suitable. Is not translation invariant.

- How to compactify?
- One point compactification is not suitable.
- **Is** not translation invariant.
- The unboundedness of $\frac{1}{|x|}$ is not a problem.

Take a function $f(x_1, \ldots, x_k)$ that is translation invariant and continuous.

Take a function $f(x_1, \ldots, x_k)$ that is translation invariant and continuous.

Tends to 0 if $\sup_{i,j} |x_i - x_j| \to \infty$

Take a function $f(x_1, \ldots, x_k)$ that is translation invariant and continuous.

Tends to 0 if $\sup_{i,j} |x_i - x_j| \to \infty$ $\mathcal{F} = \bigcup_k \mathcal{F}_k$ Take a function f(x₁,...,x_k) that is translation invariant and continuous.
Tends to 0 if sup_{i,j} |x_i - x_j| → ∞
F = ∪_kF_k
Λ(f, μ) = ∫_{(R³)^k} f(x₁, x₂,...,x_k)μ(dx₁) ··· μ(dx_k)

Take a function f(x₁,...,x_k) that is translation invariant and continuous.
Tends to 0 if sup_{i,j} |x_i - x_j| → ∞
F = ∪_kF_k
Λ(f, μ) = ∫_{(R³)^k} f(x₁, x₂,...,x_k)μ(dx₁) ··· μ(dx_k)
Countable collection {f_j} is enough.

Take a function f(x₁,...,x_k) that is translation invariant and continuous.
Tends to 0 if sup_{i,j} |x_i - x_j| → ∞
F = ∪_kF_k
Λ(f, μ) = ∫_{(R³)^k} f(x₁, x₂,...,x_k)μ(dx₁) ··· μ(dx_k)
Countable collection {f_j} is enough.
F_{k-1} can be obtained from F_k

Take a function $f(x_1, \ldots, x_k)$ that is translation invariant and continuous. • Tends to 0 if $\sup_{i,j} |x_i - x_j| \to \infty$ **Countable collection** $\{f_i\}$ is enough. $\overline{\mathcal{F}_{k-1}}$ can be obtained from $\overline{\mathcal{F}_k}$ $f_k(x_1, \dots, x_k) = f_{k-1}(x_1, \dots, x_{k-1})\phi(x_1 - x_k)$

Take a function $f(x_1, \ldots, x_k)$ that is translation invariant and continuous. • Tends to 0 if $\sup_{i,j} |x_i - x_j| \to \infty$ **Countable collection** $\{f_i\}$ is enough. $= \mathcal{F}_{k-1}$ can be obtained from \mathcal{F}_k $f_k(x_1, \dots, x_k) = f_{k-1}(x_1, \dots, x_{k-1})\phi(x_1 - x_k)$ $= \int f_k \Pi \mu(dx_i) \to \mu(R^3) \int f_{k-1} \Pi \mu(dx_i)$

Choose a subsequence so that

Choose a subsequence so that

$$\lim_{n\to\infty} \Lambda(f,\mu_n) = \lambda(f) \text{ exists for } f \in \mathcal{F}.$$

Choose a subsequence so that lim_{n→∞} Λ(f, μ_n) = λ(f) exists for f ∈ F. What is λ(f).

Choose a subsequence so that

Trying to complete with the metric

$$D(\mu_1, \mu_2) = \sum c_j |\Lambda(f_j, \mu_1) - \Lambda(f_j, \mu_2)|$$

Choose a subsequence so that
lim_{n→∞} Λ(f, μ_n) = λ(f) exists for f ∈ F.
What is λ(f).

Trying to complete with the metric

$$D(\mu_1, \mu_2) = \sum c_j |\Lambda(f_j, \mu_1) - \Lambda(f_j, \mu_2)|$$

 $\Box c_j = \frac{1}{2^j} \frac{1}{1 + \|f_j\|_{\infty}}$

Choose a subsequence so that
lim_{n→∞} Λ(f, μ_n) = λ(f) exists for f ∈ F.
What is λ(f).

Trying to complete with the metric

$$D(\mu_1, \mu_2) = \sum c_j |\Lambda(f_j, \mu_1) - \Lambda(f_j, \mu_2)|$$

• $c_j = \frac{1}{2^j} \frac{1}{1+\|f_j\|_{\infty}}$ • $\xi = \{\widetilde{\mu}\}, \sum_{\widetilde{\mu} \in \xi} \mu(R^3) = p \le 1$

$\Lambda(\xi, f) = \sum_{\widetilde{\mu} \in \xi} \int_{(R^3)^k} f(x_1, x_2, \dots, x_k) \mu(dx_1) \cdots \mu(dx_k)$

Large Deviations for Translation Invariant Functionalsof Brownian Occupation Times – p. 16/33

$\Lambda(\xi, f) = \sum_{\widetilde{\mu} \in \xi} \int_{(R^3)^k} f(x_1, x_2, \dots, x_k) \mu(dx_1) \cdots \mu(dx_k)$

• How can a sequence μ_n fail to be compact?

Λ(ξ, f) = Σ_{μ∈ξ} ∫_{(R³)^k} f(x₁, x₂,..., x_k)μ(dx₁) ··· μ(dx_k) How can a sequence μ_n fail to be compact? μ_n = μ * δ_{a_n} with |a_n| → ∞

$$\Lambda(\xi, f) = \sum_{\widetilde{\mu} \in \xi} \int_{(R^3)^k} f(x_1, x_2, \dots, x_k) \mu(dx_1) \cdots \mu(dx_k)$$

How can a sequence μ_n fail to be compact?
$$\mu_n = \mu * \delta_{a_n} \text{ with } |a_n| \to \infty$$

$$\mu_n = \frac{1}{2} [\mu * \delta_{a_n} + \mu * \delta_{-a_n}]$$

$$\Lambda(\xi, f) = \sum_{\widetilde{\mu} \in \xi} \int_{(R^3)^k} f(x_1, x_2, \dots, x_k) \mu(dx_1) \cdots \mu(dx_k)$$

How can a sequence μ_n fail to be compact?

$$\mu_n = \mu * \delta_{a_n} \text{ with } |a_n| \to \infty$$

$$\mu_n = \frac{1}{2} [\mu * \delta_{a_n} + \mu * \delta_{-a_n}]$$

$$\mu_n = N(0, n I)$$

$$\Lambda(\xi, f) = \sum_{\widetilde{\mu} \in \xi} \int_{(R^3)^k} f(x_1, x_2, \dots, x_k) \mu(dx_1) \cdots \mu(dx_k)$$

How can a sequence μ_n fail to be compact?
 $\mu_n = \mu * \delta_{a_n}$ with $|a_n| \to \infty$
 $\mu_n = \frac{1}{2} [\mu * \delta_{a_n} + \mu * \delta_{-a_n}]$
 $\mu_n = N(0, n I)$
The orbit converges.

 $\sum_{\widetilde{\mu}\in\xi}\int_{(R^3)^k}f(x_1,x_2,\ldots,x_k)\mu(dx_1)\cdots\mu(dx_k)$ **How** can a sequence μ_n fail to be compact? $\blacksquare \mu_n = \mu * \delta_{a_n}$ with $|a_n| \to \infty$ $= \mu_n = \frac{1}{2} [\mu * \delta_{a_n} + \mu * \delta_{-a_n}]$ $\blacksquare \mu_n = N(0, n I)$ The orbit converges. **The** limit is in two pieces. μ_1, μ_2 of mass $\frac{1}{2}$ each. $\sum_{\widetilde{\mu}\in\xi} \int_{(R^3)^k} f(x_1, x_2, \dots, x_k) \overline{\mu(dx_1)} \cdots \overline{\mu(dx_k)}$ **How can a sequence** μ_n fail to be compact? $\blacksquare \mu_n = \mu * \delta_{a_n}$ with $|a_n| \to \infty$ $= \mu_n = \frac{1}{2} [\mu * \delta_{a_n} + \mu * \delta_{-a_n}]$ $\blacksquare \mu_n = N(0, n I)$ The orbit converges. The limit is in two pieces. μ_1, μ_2 of mass $\frac{1}{2}$ each. Becomes dust.

Compactification $\widetilde{\mathcal{X}}$.

Compactification X̃.
Collection of orbits ξ = {μ̃_α}

Compactification X̃. Collection of orbits ξ = {μ_α} ∑_α μ(R³) = ∑ p_α = p ≤ 1

Compactification X̂.
Collection of orbits ξ = {μ_α}
∑_α μ(R³) = ∑ p_α = p ≤ 1
Empty, finite or countable.

Compactification X̃.
Collection of orbits ξ = {μ_α}
∑_α μ(R³) = ∑ p_α = p ≤ 1
Empty, finite or countable.
Have a metric.

 $\Lambda(f,\xi) = \sum_{\widetilde{\mu}\in\xi} \int f(x_1,\ldots,x_k)\mu(dx_1)\cdots\mu(dx_k)$

$$\Lambda(f,\xi) = \sum_{\widetilde{\mu}\in\xi} \int f(x_1,\ldots,x_k)\mu(dx_1)\cdots\mu(dx_k)$$

$$D(\xi_1,\xi_2) = \sum c_r |\Lambda(f_r,\xi_1) - \Lambda(f_r,\xi_2)|$$

Large Deviations for Translation Invariant Functionalsof Brownian Occupation Times – p. 18/33

$$\Lambda(f,\xi) = \sum_{\widetilde{\mu}\in\xi} \int f(x_1,\ldots,x_k)\mu(dx_1)\cdots\mu(dx_k)$$

$$D(\xi_1,\xi_2) = \sum c_r |\Lambda(f_r,\xi_1) - \Lambda(f_r,\xi_2)|$$

Does

 $\Lambda(f,\xi_1) = \Lambda(f,\xi_2), \forall f$

imply $\xi_1 = \xi_2$?

$g_N(x_1, x_2, \dots, x_{2k}) =$ $f(x_1, \dots, x_k) f(x_{k+1}, \dots, x_{2k}) \phi_N(x_k - x_{2k})$

 $= g_N(x_1, x_2, \dots, x_{2k}) =$ $f(x_1, \ldots, x_k)f(x_{k+1}, \ldots, x_{2k})\phi_N(x_k - x_{2k})$

$\Lambda(g_N,\xi) \to \\ \sum_{\tilde{\mu}\in\xi} [\int f(x_1,\ldots,x_k)\mu(dx_1)\cdots\mu(dx_k)]^2$

Large Deviations for Translation Invariant Functionalsof Brownian Occupation Times – p. 19/33

$$g_N(x_1, x_2, \dots, x_{2k}) = f(x_1, \dots, x_k) f(x_{k+1}, \dots, x_{2k}) \phi_N(x_k - x_{2k})$$

 $\Lambda(g_N,\xi) \rightarrow \sum_{\tilde{\mu}\in\xi} [\int f(x_1,\ldots,x_k)\mu(dx_1)\cdots\mu(dx_k)]^2$

 $\sum_{\tilde{\mu}\in\xi} \left[\int f(x_1,\ldots,x_k)\mu(dx_1)\cdots\mu(dx_k)\right]^r$

$$g_N(x_1, x_2, \dots, x_{2k}) = f(x_1, \dots, x_k) f(x_{k+1}, \dots, x_{2k}) \phi_N(x_k - x_{2k})$$

 $\Lambda(g_N,\xi) \to \sum_{\tilde{\mu}\in\xi} [\int f(x_1,\ldots,x_k)\mu(dx_1)\cdots\mu(dx_k)]^2$

 $\sum_{\tilde{\mu}\in\xi} [\int f(x_1,\ldots,x_k)\mu(dx_1)\cdots\mu(dx_k)]^r$ Does it mean we know ξ ?

$$g_N(x_1, x_2, \dots, x_{2k}) = f(x_1, \dots, x_k) f(x_{k+1}, \dots, x_{2k}) \phi_N(x_k - x_{2k})$$

 $\Lambda(g_N,\xi) \rightarrow \sum_{\tilde{\mu}\in\xi} [\int f(x_1,\ldots,x_k)\mu(dx_1)\cdots\mu(dx_k)]^2$

 $= \sum_{\tilde{\mu}\in\xi} [\int f(x_1,\ldots,x_k)\mu(dx_1)\cdots\mu(dx_k)]^r$

Does it mean we know ξ ?

Let ξ_1 and ξ_2 be two collections such that for every f, $\{\int f(x_1, \ldots, x_k) \mu(dx_1) \cdots \mu(dx_k)\}$ are the same as $\tilde{\mu}$ varies over ξ_1 or ξ_2 .

• Is $\xi_1 = \xi_2$?

Large Deviations for Translation Invariant Functionalsof Brownian Occupation Times – p. 20/33

Is
$$\xi_1 = \xi_2$$
?
Given $\widetilde{\mu} \in \xi_1$ consider for $\widetilde{\nu} \in \xi_2$,
 $C_{\widetilde{\nu}} = \{f \in \mathcal{F}_k : \Lambda(f, \widetilde{\mu}) = \Lambda(f, \widetilde{\nu})\}$

Is ξ₁ = ξ₂?
Given μ̃ ∈ ξ₁ consider for ν̃ ∈ ξ₂, C_{ν̃} = {f ∈ F_k : Λ(f, μ̃) = Λ(f, ν̃)}
C_{ν̃} is closed. ∪_νC_{ν̃} = F_k.
Some C_{ν̃} has interior. Is ξ₁ = ξ₂?
Given μ̃ ∈ ξ₁ consider for ν̃ ∈ ξ₂, C_{ν̃} = {f ∈ F_k : Λ(f, μ̃) = Λ(f, ν̃)}
C_{ν̃} is closed. ∪_νC_{ν̃} = F_k.
Some C_{ν̃} has interior.
It is then equal to F_k. Is ξ₁ = ξ₂?
Given μ̃ ∈ ξ₁ consider for ν̃ ∈ ξ₂, C_{ν̃} = {f ∈ F_k : Λ(f, μ̃) = Λ(f, ν̃)}
C_{ν̃} is closed. ∪_νC_{ν̃} = F_k.
Some C_{ν̃} has interior.
It is then equal to F_k.
All the choices for different k have same mass.

• Is $\xi_1 = \xi_2$? Given $\widetilde{\mu} \in \xi_1$ consider for $\widetilde{\nu} \in \xi_2$, $C_{\tilde{\nu}} = \{ f \in \mathcal{F}_k : \Lambda(f, \tilde{\mu}) = \Lambda(f, \tilde{\nu}) \}$ $\Box C_{\tilde{\nu}}$ is closed. $\cup_{\nu} C_{\tilde{\nu}} = \mathcal{F}_k$. **Some** $C_{\tilde{\nu}}$ has interior. It is then equal to \mathcal{F}_k . All the choices for different k have same mass. Finite number.

• One of them has k >> 1

• One of them has k >> 1• $\forall f \in \mathcal{F}_k$ and $\forall k \ge 2$

Large Deviations for Translation Invariant Functionalsof Brownian Occupation Times – p. 21/33

• One of them has k >> 1• $\forall f \in \mathcal{F}_k$ and $\forall k \ge 2$ • $\int f(x_1, \dots, x_k) \mu(dx_1) \cdots \mu(dx_k) = \int f(x_1, \dots, x_k) \nu(dx_1) \cdots \nu(dx_k);$

One of them has k >> 1
∀f ∈ F_k and ∀k ≥ 2
∫ f(x₁,...,x_k)µ(dx₁) ··· µ(dx_k) = ∫ f(x₁,...,x_k)ν(dx₁) ··· ν(dx_k);
Does it imply μ = ν * δ_a for some a?

One of them has k >> 1
∀f ∈ F_k and ∀k ≥ 2
∫ f(x₁,...,x_k)µ(dx₁) ··· µ(dx_k) = ∫ f(x₁,...,x_k)ν(dx₁) ··· ν(dx_k);
Does it imply μ = ν * δ_a for some a?
φ = µ(t), ψ = ν(t)

 \blacksquare One of them has k >> 1 $\forall f \in \mathcal{F}_k \text{ and } \forall k \geq 2$ $= \int f(x_1, \ldots, x_k) \mu(dx_1) \cdots \mu(dx_k) =$ $\int f(x_1,\ldots,x_k)\nu(dx_1)\cdots\nu(dx_k);$ **Does it imply** $\mu = \nu * \delta_a$ for some a? $\phi = \overline{\hat{\mu}(t)}, \, \psi = \overline{\hat{
u}(t)}$ $\pi_{i-1}^{k} \phi(t_i) = \pi_{i-1}^{k} \psi(t_i)$ if $\sum_{i} t_i = 0$.

• One of them has k >> 1 $\forall f \in \mathcal{F}_k \text{ and } \forall k \geq 2$ $\int f(x_1, \ldots, x_k) \mu(dx_1) \cdots \mu(dx_k) =$ $\int f(x_1,\ldots,x_k)\nu(dx_1)\cdots\nu(dx_k);$ **Does it imply** $\mu = \nu * \delta_a$ for some a? $\phi = \hat{\mu}(t), \psi = \hat{\nu}(t)$ $\pi_{i=1}^{k} \phi(t_i) = \pi_{i=1}^{k} \psi(t_i) \text{ if } \sum_i t_i = 0.$ $= \phi(t)\phi(-t) = \psi(t)\psi(-t)$

$|\phi(t)| = |\psi(t)|$

$$\begin{aligned} |\phi(t)| &= |\psi(t)| \\ \phi(t) &= \psi(t)\chi(t) \text{ on } G = \{t : |\phi(t)| \neq 0\} \end{aligned}$$

$|\phi(t)| = |\psi(t)|$ $\phi(t) = \psi(t)\chi(t) \text{ on } G = \{t : |\phi(t)| \neq 0\}$ $\chi(t_1)\chi(t_2)\chi(-t_1 - t_2) = 1 \text{ if } t_1, t_2 \in G.$

$$\begin{aligned} |\phi(t)| &= |\psi(t)| \\ \phi(t) &= \psi(t)\chi(t) \text{ on } G = \{t : |\phi(t)| \neq 0\} \\ \chi(t_1)\chi(t_2)\chi(-t_1 - t_2) &= 1 \text{ if } t_1, t_2 \in G. \\ \chi(t_1 + t_2) &= \chi(t_1)\chi(t_2), \end{aligned}$$

$$\begin{aligned} |\phi(t)| &= |\psi(t)| \\ \phi(t) &= \psi(t)\chi(t) \text{ on } G = \{t : |\phi(t)| \neq 0\} \\ \chi(t_1)\chi(t_2)\chi(-t_1 - t_2) &= 1 \text{ if } t_1, t_2 \in G \\ \chi(t_1 + t_2) &= \chi(t_1)\chi(t_2), \\ \chi(nt) &= [\chi(t)]^n, \, \chi(t) = e^{i < a, t > a} \end{aligned}$$

$\blacksquare \widetilde{\mathcal{M}} \text{ is dense in } \widetilde{\mathcal{X}}$

μ_1, \ldots, μ_N separate them, rest of the mass is spread out.

- μ_1, \ldots, μ_N separate them, rest of the mass is spread out.
- Given a sequence $\widetilde{\mu}_n \in \widetilde{\mathcal{M}}$ there is subsequence that converges to a limit ξ in $\widetilde{\mathcal{X}}$

• μ_1, \ldots, μ_N separate them, rest of the mass is spread out.

Given a sequence $\widetilde{\mu}_n \in \widetilde{\mathcal{M}}$ there is subsequence that converges to a limit ξ in $\widetilde{\mathcal{X}}$

Use concentration function.

• μ_1, \ldots, μ_N separate them, rest of the mass is spread out.

Given a sequence μ̃_n ∈ M there is subsequence that converges to a limit ξ in X̃
Use concentration function.
q_μ(r) = sup_x μ[B(x, r)]

\mathbf{I} is dense in $\widetilde{\mathcal{X}}$

- μ_1, \ldots, μ_N separate them, rest of the mass is spread out.
- Given a sequence $\widetilde{\mu}_n \in \widetilde{\mathcal{M}}$ there is subsequence that converges to a limit ξ in $\widetilde{\mathcal{X}}$

Use concentration function.

 $q_{\mu}(r) = \sup_{x} \mu[B(x, r)]$ $q_{\mu_n}(k) \to q(k), q(k) \to q \le 1.$

- μ_1, \ldots, μ_N separate them, rest of the mass is spread out.
- Given a sequence $\widetilde{\mu}_n \in \widetilde{\mathcal{M}}$ there is subsequence that converges to a limit ξ in $\widetilde{\mathcal{X}}$

Use concentration function.

- $q_{\mu}(r) = \sup_{x} \mu[B(x,r)]$
- $q_{\mu_n}(k) \to q(k), q(k) \to q \le 1.$

Depends only on the orbit.

q = 1. μ_n is tight after translation.

q = 1. μ_n is tight after translation. q = 0 disintegrates to dust. tends to ξ = 0.

q = 1. μ_n is tight after translation. q = 0 disintegrates to dust. tends to ξ = 0. 0 < q < 1. Can recover a big piece of at least ^q/₂, the rest of is far away.

- $\blacksquare q = 1$. μ_n is tight after translation.
- q = 0 disintegrates to dust. tends to $\xi = 0$.
- 0 < q < 1. Can recover a big piece of at least $\frac{q}{2}$, the rest of is far away.
- Repeat and exhaust.

• Local upper bounds about the new points in \mathcal{X} .

Local upper bounds about the new points in X. Lower bound is easy.

Local upper bounds about the new points in X. Lower bound is easy.

•
$$\widetilde{\mu}_n \to \xi$$
 with $I(\mu_n) \to I(\xi) = \sum_{\widetilde{\mu} \in \xi} I(\mu_j)$

Local upper bounds about the new points in X. Lower bound is easy. μ̃_n → ξ with I(μ_n) → I(ξ) = Σ_{μ∈ξ} I(μ_j) I(μ) = sup_{u>0} [− ∫ ^{1/2}/_u dμ]

Local upper bounds about the new points in X.
Lower bound is easy.
\$\tilde{\mu}_n\$ \$\to \xi\$ with \$I(\mu_n)\$ \$\to \$I(\xi)\$ \$= \$\sum_{\tilde{\mu} \in \xi}\$ \$I(\mu_j)\$
\$I(\mu)\$ \$= \$\sum_{u>0}\$ \$\begin{bmatrix} -1 \$\frac{1}{2} \Delta u \$ \$\text{d} \mu\$ \$\text{d} \$\mu\$ \$\text{d} \$\text{d} \$\mu\$ \$\text{d} \$

v compact support, smooth. u = v + c

• v compact support, smooth. u = v + c• $g(k, \ell, c, a_1, \dots, a_k, x) = c + \sum_{i=1}^k u_i(x + a_i)\phi(\frac{x + a_i}{\ell})$

• v compact support, smooth. u = v + c• $g(k, \ell, c, a_1, \dots, a_k, x) = c + \sum_{i=1}^k u_i(x+a_i)\phi(\frac{x+a_i}{\ell})$ • $F(u_1, \dots, u_k, c, \ell, t, \omega)$

v compact support, smooth. u = v + c g(k, l, c, a₁, ..., a_k, x) = c + ∑_{i=1}^k u_i(x + a_i)φ(x+a_i)/ℓ F(u₁, ..., u_k, c, l, t, ω)

$$\sup_{\substack{a_1,\dots,a_k\\ \inf_{i\neq j} |a_i-a_j| \ge 4\ell}} \frac{1}{t} \int_0^t \frac{-\frac{1}{2} \Delta g(k,\ell,c,a_1,\dots,a_k,x(s))}{g(k,\ell,c,a_1,\dots,a_k,x(s))} ds$$

Large Deviations for Translation Invariant Functionalsof Brownian Occupation Times – p. 26/33

$$\sup_{\substack{a_1,\dots,a_k\\\inf_{i\neq j}|a_i-a_j|\geq 4\ell}} \int_d \frac{-\frac{1}{2}\Delta g(k,\ell,c,a_1,\dots,a_k,x)}{g(k,\ell,c,a_1,\dots,a_k,x)} L_t(dx)$$

$$\sup_{\substack{a_1,\dots,a_k\\\inf_{i\neq j}|a_i-a_j|\geq 4\ell}} \int_d \frac{-\frac{1}{2}\Delta g(k,\ell,c,a_1,\dots,a_k,x)}{g(k,\ell,c,a_1,\dots,a_k,x)} L_t(dx)$$

$$\widetilde{F}(u_1,\ldots,u_k,c,\ell,\widetilde{L}_t)$$

Large Deviations for Translation Invariant Functionalsof Brownian Occupation Times – p. 27/33

$$\sup_{\substack{a_1,\dots,a_k\\\inf_{i\neq j}|a_i-a_j|\geq 4\ell}} \int_d \frac{-\frac{1}{2}\Delta g(k,\ell,c,a_1,\dots,a_k,x)}{g(k,\ell,c,a_1,\dots,a_k,x)} L_t(dx)$$

$$\widetilde{F}(u_1,\ldots,u_k,c,\ell,\widetilde{L}_t)$$

$$E\left[\exp\left[\int_{0}^{t} \frac{-\frac{1}{2}\Delta g(x(s))}{g(x(s))}ds\right]\right] \leq \frac{C}{c}$$

Large Deviations for Translation Invariant Functionalsof Brownian Occupation Times – p. 27/33

Small variations in a_i change little.

Small variations in a_i change little.

$$|a_i| \le t^2?$$

Large Deviations for Translation Invariant Functionalsof Brownian Occupation Times – p. 28/33

Small variations in a_i change little.

- $|a_i| \le t^2?$
- sup over polynomially many sets of $\{a_i\}$.

Small variations in a_i change little. |a_i| ≤ t²? sup over polynomially many sets of {a_i}. u_{i,ℓ} = u_i(x)φ(^x/_ℓ)

 $\liminf_{\mu \to \xi} \widetilde{F}(u_1, \dots, u_k, c, \ell, \widetilde{\mu}) \ge$

$$\liminf_{\mu \to \xi} \widetilde{F}(u_1, \dots, u_k, c, \ell, \widetilde{\mu}) \ge$$

$$\sum_{i=1}^{k} \int \frac{-\left(\frac{1}{2}\Delta u_{i,\ell}\right)(x)}{c+u_{i,\ell}(x)} \alpha_i(dx)$$

Large Deviations for Translation Invariant Functionalsof Brownian Occupation Times – p. 29/33

$$\liminf_{\mu \to \xi} \widetilde{F}(u_1, \dots, u_k, c, \ell, \widetilde{\mu}) \ge$$

$$\sum_{i=1}^{k} \int \frac{-\left(\frac{1}{2}\Delta u_{i,\ell}\right)(x)}{c+u_{i,\ell}(x)} \alpha_i(dx)$$

 $\Lambda(\xi,\ell,c,u_1,\ldots,u_k)$

Large Deviations for Translation Invariant Functionalsof Brownian Occupation Times – p. 29/33

$$\liminf_{\mu \to \xi} \widetilde{F}(u_1, \dots, u_k, c, \ell, \widetilde{\mu}) \ge \frac{k}{2} \int -\left(\frac{1}{2}\Delta u_{i,\ell}\right)(x) \qquad (1)$$

$$\sum_{i=1}^{n} \int \frac{-\left(\frac{1}{2}\Delta u_{i,\ell}\right)(x)}{c+u_{i,\ell}(x)} \alpha_i(dx)$$

$$\Lambda(\xi,\ell,c,u_1,\ldots,u_k)$$

$$\sup_{c,k,\ell,u_1,\ldots,u_k} \Lambda(\xi,\ell,c,u_1,\ldots,u_k) = I(\xi)$$

Large Deviations for Translation Invariant Functionalsof Brownian Occupation Times – p. 29/33

$$\liminf_{\mu \to \xi} \widetilde{F}(u_1, \dots, u_k, c, \ell, \widetilde{\mu}) \ge \\ \sum_{i=1}^k \int \frac{-(\frac{1}{2}\Delta u_{i,\ell})(x)}{c + u_{i,\ell}(x)} \alpha_i(dx)$$

$$\Lambda(\xi,\ell,c,u_1,\ldots,u_k)$$

$$\sup_{k,\ell,u_1,\ldots,u_k} \Lambda(\xi,\ell,c,u_1,\ldots,u_k) = I(\xi)$$

 $\quad \widetilde{I}(\xi) = \sum_{\widetilde{\mu} \in \xi} I(\mu)$

C

$$= F(\mu) = \int \frac{1}{|x_1 - x_2|} \mu(dx_1) \mu(dx_2)$$

$$F(\mu) = \int \frac{1}{|x_1 - x_2|} \mu(dx_1) \mu(dx_2)$$

Singularity is not a problem.

 $\sup_{\xi} \left[\Lambda(\frac{1}{|x-y|},\xi) - I(\xi) \right]$

Large Deviations for Translation Invariant Functionalsof Brownian Occupation Times – p. 30/33

$$F(\mu) = \int \frac{1}{|x_1 - x_2|} \mu(dx_1) \mu(dx_2)$$

Singularity is not a problem.
variational problem is

$$\sup_{\xi} \left[\Lambda(\frac{1}{|x-y|},\xi) - I(\xi) \right]$$

Sup is attained at $\xi = {\widetilde{\mu}_0}$, a single orbit of unit mass.

$$F(\mu) = \int \frac{1}{|x_1 - x_2|} \mu(dx_1) \mu(dx_2)$$

Singularity is not a problem.variational problem is

$$\sup_{\xi} \left[\Lambda(\frac{1}{|x-y|},\xi) - I(\xi) \right]$$

- Sup is attained at $\xi = {\widetilde{\mu}_0}$, a single orbit of unit mass.
- Unique up to translation. On $\widetilde{\mathcal{X}}$ there is a unique maximum.

• The mass under Q_T concentrates in a neighborhood of the orbit.

• The mass under Q_T concentrates in a neighborhood of the orbit.

$$\bullet Q_T \Rightarrow \delta_{\widetilde{\mu}_0}$$

Thank You

Large Deviations for Translation Invariant Functionalsof Brownian Occupation Times – p. 32/33