Large Deviations for Translation Invariant Functionals of Brownian Occupation Times

S.R.S. Varadhan
New York University

Michigan State University
April 2, 2015
Large Deviations.
Large Deviations.

\[X, \{P_\epsilon\}. \quad P_\epsilon \to \delta_x \text{ as } \epsilon \to 0. \]
Large Deviations.

\(X, \{P_\varepsilon\} \). \(P_\varepsilon \to \delta_x \) as \(\varepsilon \to 0 \).

\[
P_\varepsilon(A) \simeq \exp\left[-\frac{1}{\varepsilon} \inf_{x \in A} I(x) + o\left(\frac{1}{\varepsilon}\right)\right]
\]
Large Deviations.

$X, \{P_\epsilon\}$. $P_\epsilon \to \delta_x$ as $\epsilon \to 0$.

$$P_\epsilon(A) \simeq \exp\left[-\frac{1}{\epsilon} \inf_{x \in A} I(x) + o\left(\frac{1}{\epsilon}\right)\right]$$

Lower bound for open sets and upper bound for closed sets.
Conclusions.
Conclusions.

\[\epsilon \log \int \exp \left[\frac{F(x)}{\epsilon} \right] dP_\epsilon \to \sup_x [F(x) - I(x)] \]
Conclusions.

\[\epsilon \log \int \exp\left[\frac{F(x)}{\epsilon} \right] dP_\epsilon \to \sup_x [F(x) - I(x)] \]

\[dQ_\epsilon = [Z_\epsilon]^{-1} \exp\left[\frac{F(x)}{\epsilon} \right] dP_\epsilon \]
Conclusions.

\[\epsilon \log \int \exp\left[\frac{F(x)}{\epsilon} \right] dP_\epsilon \rightarrow \sup x \left[F(x) - I(x) \right] \]

Where

\[dQ_\epsilon = [Z_\epsilon]^{-1} \exp\left[\frac{F(x)}{\epsilon} \right] dP_\epsilon \]

\[Z_\epsilon = \int \exp\left[\frac{F(x)}{\epsilon} \right] dP_\epsilon \]
$Q_\epsilon \to \delta_y$
\(Q_\varepsilon \rightarrow \delta_y \)

\(y \) is the unique point such that
\[
F(y) - I(y) = \sup_x [F(x) - I(x)].
\]
$Q_\epsilon \rightarrow \delta_y$

y is the unique point such that

$$F(y) - I(y) = \sup_x [F(x) - I(x)].$$

For the proof to work out one needs the upper bound to hold for all closed sets.
\(Q_\epsilon \rightarrow \delta_y \)

- \(y \) is the unique point such that
 \[F(y) - I(y) = \sup_x [F(x) - I(x)]. \]

- For the proof to work out one needs the upper bound to hold for all closed sets.

- Often one gets local estimates. Pushed to Compact sets.
$Q_{\epsilon} \to \delta_y$

y is the unique point such that

$$F(y) - I(y) = \sup_x [F(x) - I(x)].$$

For the proof to work out one needs the upper bound to hold for all closed sets.

Often one gets local estimates. Pushed to Compact sets.

$$e^{\frac{a}{\epsilon}} + e^{\frac{b}{\epsilon}} = e^{\frac{\max\{a,b\}}{\epsilon}} + o\left(\frac{1}{\epsilon}\right)$$
Markov process. ergodic theorem. Brownian motion on the circle.
Markov process. ergodic theorem. Brownian motion on the circle.

Normalized Lebesgue measure is invariant
Markov process. ergodic theorem. Brownian motion on the circle.

Normalized Lebesgue measure is invariant

\[L_T = \frac{1}{T} \int_0^T \delta_x(s) \, ds \]

- Normalized Lebesgue measure is invariant

\[L_T = \frac{1}{T} \int_0^T \delta_{x(s)} \, ds \]

\[L_T(A) = \frac{1}{T} \int_0^T 1_A(x(s)) \, ds \]
Markov process. ergodic theorem. Brownian motion on the circle.

Normalized Lebesgue measure is invariant

\[L_T = \frac{1}{T} \int_0^T \delta_{x(s)} \, ds \]

\[L_T(A) = \frac{1}{T} \int_0^T 1_A(x(s)) \, ds \]

\(Q_T \) is the distribution of \(L_T \)
Markov process. ergodic theorem. Brownian motion on the circle.

Normalized Lebesgue measure is invariant

\[L_T = \frac{1}{T} \int_0^T \delta_x(s) \, ds \]

\[L_T(A) = \frac{1}{T} \int_0^T 1_A(x(s)) \, ds \]

\(Q_T \) is the distribution of \(L_T \)

\[\int \exp[T \int V(x) \mu(dx)] Q_T(d\mu) = E[\exp \int_0^T V(x(s)) \, ds] \]
Q_T has a LDP. \(d\mu = f(x)dx \)
Q_T has a LDP. $d\mu = f(x)dx$

$I(\mu) = \frac{1}{8} \int_{S^1} \frac{[f'(x)]^2}{f(x)} dx$
\(Q_T \) has a LDP. \(d\mu = f(x)dx \)

\[I(\mu) = \frac{1}{8} \int_{S^1} \left[\frac{f'(x)}{f(x)} \right]^2 dx \]

\(\mathcal{M}(S^1) \) is compact.
Q_T has a LDP. $d\mu = f(x)dx$

$I(\mu) = \frac{1}{8} \int_{S^1} \left[\frac{f'(x)}{f(x)}\right]^2 dx$

$\mathcal{M}(S^1)$ is compact.

If we replace S^1 by R, there is a problem.
- Q_T has a LDP. $d\mu = f(x)dx$
- $I(\mu) = \frac{1}{8} \int_{S^1} \frac{[f'(x)]^2}{f(x)} dx$
- $\mathcal{M}(S^1)$ is compact.
- If we replace S^1 by R, there is a problem.
- There is no invariant measure. dissipative.
Can remedy it by compactifying \mathbb{R} by adding ∞.
Can remedy it by compactifying \mathbb{R} by adding ∞.

Then M becomes $M_{\leq 1}$.
Can remedy it by compactifying R by adding ∞.
Then \mathcal{M} becomes $\mathcal{M}_{\leq 1}$.
$I(0) = 0$.
Can remedy it by compactifying R by adding ∞.

Then \mathcal{M} becomes $\mathcal{M}_{\leq 1}$.

$I(0) = 0$.

$\int V(x) \, d\mu$ with $V(x) \to 0$ as $|x| \to \infty$ are OK.
Can remedy it by compactifying \mathbb{R} by adding ∞.

Then \mathcal{M} becomes $\mathcal{M}_{\leq 1}$.

$I(0) = 0$.

$\int V(x) \, d\mu$ with $V(x) \to 0$ as $|x| \to \infty$ are OK.

One can compactify space add point at ∞.
Can remedy it by compactifying R by adding ∞.

Then \mathcal{M} becomes $\mathcal{M}_{\leq 1}$.

$I(0) = 0$.

$\int V(x) d\mu$ with $V(x) \to 0$ as $|x| \to \infty$ are OK.

One can compactify space add point at ∞.

The missing mass is at ∞.
The rate function is still the same.
The rate function is still the same.

\[I(f + c\delta_{\infty}) = I(f) \]
The rate function is still the same.

\[I(f + c\delta_\infty) = I(f) \]

Not good for translation invariant functionals.
The rate function is still the same.

\[I(f + c\delta_{\infty}) = I(f) \]

Not good for translation invariant functionals.

\[Z_T = E\left[\exp \left(\frac{1}{T} \int_0^T \int_0^T V(x(s) - x(t)) \, ds \, dt \right) \right] \]
The rate function is still the same.

\[I(f + c\delta_{\infty}) = I(f) \]

Not good for translation invariant functionals.

\[
Z_T = E\left[\exp\left(\frac{1}{T} \int_0^T \int_0^T V(x(s) - x(t)) \, ds \, dt \right) \right]
\]

\[
\ell = \lim_{T \to \infty} \frac{1}{T} \log Z_T
\]
The rate function is still the same.

\[I(f + c\delta_\infty) = I(f) \]

Not good for translation invariant functionals.

\[Z_T = E\left[\exp\left(\frac{1}{T} \int_0^T \int_0^T V(x(s) - x(t)) ds dt \right) \right] \]

\[\ell = \lim_{T \to \infty} \frac{1}{T} \log Z_T \]

\[= \sup_f \left[\int \int V(x - y) f(x) f(y) dx dy - I(f) \right] \]
Brownian Motion in \mathbb{R}^3.
Brownian Motion in R^3.

$$\psi_T(\omega) = \frac{1}{T} \int_0^T \int_0^T \frac{1}{\left| x(t) - x(s) \right|} dsdt$$
Brownian Motion in R^3.

$$\psi_T(\omega) = \frac{1}{T} \int_0^T \int_0^T \frac{1}{|x(t) - x(s)|} ds dt$$

$$\psi_T(\omega) = T \int \int \frac{1}{|x - y|} L_T(dx)L_T(dy)$$
Brownian Motion in R^3.

$$\psi_T(\omega) = \frac{1}{T} \int_0^T \int_0^T \frac{1}{|x(t) - x(s)|} ds dt$$

$$\psi_T(\omega) = T \int \int \frac{1}{|x - y|} L_T(dx)L_T(dy)$$

$$Z_T = E[\exp[\psi_T(\omega)]]$$
Brownian Motion in R^3.

\[
\psi_T(\omega) = \frac{1}{T} \int_0^T \int_0^T \frac{1}{|x(t) - x(s)|} dsdt
\]

\[
\psi_T(\omega) = T \int \int \frac{1}{|x - y|} L_T(dx) L_T(dy)
\]

\[
Z_T = E[\exp[\psi_T(\omega)]]
\]

\[
dQ_T = \frac{1}{Z_T} \exp[\psi_T(\omega)] dP
\]
The problem is translation invariant.
- The problem is translation invariant.
- Natural space is $\mathcal{X} = \mathcal{M}(\mathbb{R}^3)/\mathbb{R}^3$
The problem is translation invariant.

Natural space is $\mathcal{X} = \mathcal{M}(\mathbb{R}^3)/\mathbb{R}^3$

Not compact.
The problem is translation invariant.

Natural space is $\mathcal{X} = \mathcal{M}(\mathbb{R}^3)/\mathbb{R}^3$

Not compact.

There is local LDP
The problem is translation invariant.

Natural space is $\mathcal{X} = \mathcal{M}(\mathbb{R}^3)/\mathbb{R}^3$

Not compact.

There is local LDP

$P[L_T \sim f \, dx] = \exp[-TI(f)]$
The problem is translation invariant.

Natural space is \(\mathcal{X} = \mathcal{M}(R^3)/R^3 \)

Not compact.

There is local LDP

\[
P[L_T \simeq f \, dx] = \exp[-TI(f)]
\]

\[
I(f) = \frac{1}{8} \int \frac{\|\nabla f\|^2}{f^2} dx
\]
The variational problem

\[
\sup_f \left[\int \frac{1}{|x-y|} f(x)f(y) \, dx \, dy - I(f) \right]
\]
The variational problem

$$\sup_f \left[\int \frac{1}{|x-y|} f(x)f(y) \, dx \, dy - I(f) \right]$$

Has a unique maximizer. (modulo translation)
The variational problem

$$\sup_f \left[\int \frac{1}{|x-y|} f(x) f(y) dx dy - I(f) \right]$$

Has a unique maximizer. (modulo translation)

One expects on $\tilde{\mathcal{X}} = \mathcal{X}/R^3$, $Q_T \rightarrow \delta_{\tilde{f}}$
The variational problem

\[\sup_f \left[\int \frac{1}{|x-y|} f(x) f(y) dx dy - I(f) \right] \]

Has a unique maximizer. (modulo translation)

One expects on \(\tilde{\mathcal{X}} = \mathcal{X} / R^3 \), \(Q_T \rightarrow \delta_{\tilde{f}} \)

Compactify \(\tilde{\mathcal{X}} \)
The variational problem
\[
\sup_f \left[\int \frac{1}{|x-y|} f(x) f(y) dx dy - I(f) \right]
\]
has a unique maximizer. (modulo translation)

One expects on \(\tilde{\mathcal{X}} = \mathcal{X} / \mathbb{R}^3 \), \(Q_T \to \delta_{\tilde{f}} \)

Compactify \(\tilde{\mathcal{X}} \)

Identify the compactification.
The variational problem

\[
\sup_f \left[\int \frac{1}{|x-y|} f(x)f(y) \, dx \, dy - I(f) \right]
\]

Has a unique maximizer. (modulo translation)

One expects on \(\tilde{\mathcal{X}} = \mathcal{X}/R^3 \), \(Q_T \to \delta_{\tilde{f}} \)

Compactify \(\tilde{\mathcal{X}} \)

Identify the compactification.

Prove the upper and lower bounds at the new points.
The variational problem
\[
\sup_f \left[\int \frac{1}{|x-y|} f(x) f(y) dx dy - I(f) \right]
\]

Has a unique maximizer. (modulo translation)

One expects on \(\tilde{\mathcal{X}} = \mathcal{X} / R^3 \), \(Q_T \to \delta_{\tilde{f}} \)

Compactify \(\tilde{\mathcal{X}} \)

Identify the compactification.

Prove the upper and lower bounds at the new points.

Show the supremum now is still attained at the same \(f \).
Joint work with Chiranjib Mukherjee.
Joint work with Chiranjib Mukherjee.

$F(L_T)$.
Joint work with Chiranjib Mukherjee.

\[F(L_T). \]

\[F(\mu) = F(\mu \ast \delta_a) \]
Joint work with Chiranjib Mukherjee.

\[F(L_T) \]

\[F(\mu) = F(\mu * \delta_a) \]

Examples
Joint work with Chiranjib Mukherjee.

$F(L_T)$.

$F(\mu) = F(\mu \ast \delta_\alpha)$

Examples

$F(\mu) = \int_{(\mathbb{R}^3)^k} f(x_1, x_2, \ldots, x_k) \mu(dx_1) \cdots \mu(dx_k)$
Joint work with Chiranjib Mukherjee.

$F(L_T)$.

$F(\mu) = F(\mu \ast \delta_a)$

Examples

$F(\mu) = \int_{R^3} f(x_1, x_2, \ldots, x_k) \mu(dx_1) \cdots \mu(dx_k)$

$f(x_1 + x, \ldots, x_k + x) = f(x_1, x_2, \ldots, x_k)$
Joint work with Chiranjib Mukherjee.

$F(L_T)$.

$F(\mu) = F(\mu \ast \delta_a)$

Examples

$F(\mu) = \int_{(\mathbb{R}^3)^k} f(x_1, x_2, \ldots, x_k) \mu(dx_1) \cdots \mu(dx_k)$

$f(x_1 + x, \ldots, x_k + x) = f(x_1, x_2, \ldots, x_k)$

$f \to 0$ if $\sup_{i,j} |x_i - x_j| \to \infty$
Joint work with Chiranjib Mukherjee.

F(L_T).

F(\mu) = F(\mu \ast \delta_a)

Examples

F(\mu) = \int_{(\mathbb{R}^3)^k} f(x_1, x_2, \ldots, x_k) \mu(dx_1) \cdots \mu(dx_k)

f(x_1 + x, \ldots, x_k + x) = f(x_1, x_2, \ldots, x_k)

f \to 0 \text{ if } \sup_{i,j} |x_i - x_j| \to \infty

\frac{1}{T} \log E[\exp[TF]]
How to compactify?
- How to compactify?
- One point compactification is not suitable.
How to compactify?

- One point compactification is not suitable.
- Is not translation invariant.
How to compactify?

One point compactification is not suitable.

Is not translation invariant.

The unboundedness of $\frac{1}{|x|}$ is not a problem.
Take a function $f(x_1, \ldots, x_k)$ that is translation invariant and continuous.
Take a function $f(x_1, \ldots, x_k)$ that is translation invariant and continuous.

Tends to 0 if $\sup_{i,j} |x_i - x_j| \to \infty$
Take a function $f(x_1, \ldots, x_k)$ that is translation invariant and continuous.

Tends to 0 if $\sup_{i,j} |x_i - x_j| \to \infty$

$\mathcal{F} = \bigcup_k \mathcal{F}_k$
Take a function $f(x_1, \ldots, x_k)$ that is translation invariant and continuous.

Tends to 0 if $\sup_{i,j} |x_i - x_j| \to \infty$

$\mathcal{F} = \bigcup_k \mathcal{F}_k$

$\Lambda(f, \mu) = \int_{(R^3)^k} f(x_1, x_2, \ldots, x_k) \mu(dx_1) \cdots \mu(dx_k)$
- Take a function $f(x_1, \ldots, x_k)$ that is translation invariant and continuous.
- Tends to 0 if $\sup_{i,j} |x_i - x_j| \to \infty$
- $\mathcal{F} = \bigcup_k \mathcal{F}_k$
- $\Lambda(f, \mu) = \int_{(R^3)^k} f(x_1, x_2, \ldots, x_k) \mu(dx_1) \cdots \mu(dx_k)$
- Countable collection $\{f_j\}$ is enough.
Take a function \(f(x_1, \ldots, x_k) \) that is translation invariant and continuous.

Tends to 0 if \(\sup_{i,j} |x_i - x_j| \to \infty \)

\(\mathcal{F} = \bigcup_k \mathcal{F}_k \)

\(\Lambda(f, \mu) = \int_{(\mathbb{R}^3)^k} f(x_1, x_2, \ldots, x_k) \mu(dx_1) \cdots \mu(dx_k) \)

Countable collection \(\{f_j\} \) is enough.

\(\mathcal{F}_{k-1} \) can be obtained from \(\mathcal{F}_k \)
Take a function $f(x_1, \ldots, x_k)$ that is translation invariant and continuous.

Tends to 0 if $\sup_{i,j} |x_i - x_j| \to \infty$

$\mathcal{F} = \bigcup_k \mathcal{F}_k$

$\Lambda(f, \mu) = \int_{(\mathbb{R}^3)^k} f(x_1, x_2, \ldots, x_k)\mu(dx_1) \cdots \mu(dx_k)$

Countable collection $\{f_j\}$ is enough.

\mathcal{F}_{k-1} can be obtained from \mathcal{F}_k

$f_k(x_1, \ldots, x_k) = f_{k-1}(x_1, \ldots, x_{k-1})\phi(x_1 - x_k)$
Take a function \(f(x_1, \ldots, x_k) \) that is translation invariant and continuous.

Tends to 0 if \(\sup_{i,j} |x_i - x_j| \to \infty \)

\[\mathcal{F} = \bigcup_k \mathcal{F}_k \]

\[\Lambda(f, \mu) = \int_{(R^3)^k} f(x_1, x_2, \ldots, x_k) \mu(dx_1) \cdots \mu(dx_k) \]

Countable collection \(\{f_j\} \) is enough.

\(\mathcal{F}_{k-1} \) can be obtained from \(\mathcal{F}_k \)

\[f_k(x_1, \ldots, x_k) = f_{k-1}(x_1, \ldots, x_{k-1}) \phi(x_1 - x_k) \]

\[\int f_k \Pi \mu(dx_i) \to \mu(R^3) \int f_{k-1} \Pi \mu(dx_i) \]
Choose a subsequence so that
Choose a subsequence so that

\[\lim_{n \to \infty} \Lambda(f, \mu_n) = \lambda(f) \] exists for \(f \in \mathcal{F} \).
Choose a subsequence so that
\[\lim_{n \to \infty} \Lambda(f, \mu_n) = \lambda(f) \text{ exists for } f \in \mathcal{F}. \]
What is \(\lambda(f) \).
Choose a subsequence so that
\[\lim_{n \to \infty} \Lambda(f, \mu_n) = \lambda(f) \] exists for \(f \in \mathcal{F} \).
What is \(\lambda(f) \).
Trying to complete with the metric
\[
D(\mu_1, \mu_2) = \sum c_j |\Lambda(f_j, \mu_1) - \Lambda(f_j, \mu_2)|
\]
Choose a subsequence so that
\[\lim_{n \to \infty} \Lambda(f, \mu_n) = \lambda(f) \] exists for \(f \in \mathcal{F} \).

What is \(\lambda(f) \).

Trying to complete with the metric
\[
D(\mu_1, \mu_2) = \sum c_j |\Lambda(f_j, \mu_1) - \Lambda(f_j, \mu_2)|
\]

\[c_j = \frac{1}{2^j} \frac{1}{1 + \|f_j\|_\infty} \]
Choose a subsequence so that
\[\lim_{n \to \infty} \Lambda(f, \mu_n) = \lambda(f) \] exists for \(f \in \mathcal{F} \).

What is \(\lambda(f) \)?

Trying to complete with the metric
\[
D(\mu_1, \mu_2) = \sum c_j |\Lambda(f_j, \mu_1) - \Lambda(f_j, \mu_2)|
\]
where
\[
c_j = \frac{1}{2^j} \frac{1}{1+\|f_j\|_{\infty}}
\]
and
\[
\xi = \{\tilde{\mu}\}, \sum_{\tilde{\mu} \in \xi} \mu(R^3) = p \leq 1
\]
\[\Lambda(\xi, f) = \sum_{\tilde{\mu} \in \xi} \int_{(\mathbb{R}^3)^k} f(x_1, x_2, \ldots, x_k) \mu(dx_1) \cdots \mu(dx_k) \]
\[\Lambda(\xi, f) = \sum_{\tilde{\mu} \in \xi} \int_{(R^3)^k} f(x_1, x_2, \ldots, x_k) \mu(dx_1) \cdots \mu(dx_k) \]

How can a sequence \(\mu_n \) fail to be compact?
\[\Lambda(\xi, f) = \sum_{\tilde{\mu} \in \xi} \int_{(\mathbb{R}^3)^k} f(x_1, x_2, \ldots, x_k) \mu(dx_1) \cdots \mu(dx_k) \]

How can a sequence \(\mu_n \) fail to be compact?

\[\mu_n = \mu \ast \delta_{a_n} \text{ with } |a_n| \to \infty \]
\[\Lambda(\xi, f) = \sum_{\tilde{\mu} \in \xi} \int_{(\mathbb{R}^3)^k} f(x_1, x_2, \ldots, x_k) \mu(dx_1) \cdots \mu(dx_k) \]

How can a sequence \(\mu_n \) fail to be compact?

\(\mu_n = \mu \ast \delta_{a_n} \) with \(|a_n| \to \infty \)

\(\mu_n = \frac{1}{2} [\mu \ast \delta_{a_n} + \mu \ast \delta_{-a_n}] \)
\[\Lambda(\xi, f) = \sum_{\tilde{\mu} \in \xi} \int_{(R^3)^k} f(x_1, x_2, \ldots, x_k) \mu(dx_1) \cdots \mu(dx_k) \]

How can a sequence \(\mu_n \) fail to be compact?

\[\mu_n = \mu \ast \delta_{a_n} \text{ with } |a_n| \to \infty \]

\[\mu_n = \frac{1}{2} [\mu \ast \delta_{a_n} + \mu \ast \delta_{-a_n}] \]

\[\mu_n = \mathcal{N}(0, nI) \]
\[\Lambda(\xi, f) = \sum_{\tilde{\mu} \in \xi} \int_{(R^3)^k} f(x_1, x_2, \ldots, x_k) \mu(dx_1) \cdots \mu(dx_k) \]

How can a sequence \(\mu_n \) fail to be compact?

- \(\mu_n = \mu \ast \delta_{a_n} \) with \(|a_n| \to \infty \)
- \(\mu_n = \frac{1}{2} [\mu \ast \delta_{a_n} + \mu \ast \delta_{-a_n}] \)
- \(\mu_n = N(0, nI) \)

The orbit converges.
\[
\Lambda(\xi, f) = \sum_{\tilde{\mu} \in \xi} \int_{(R^3)^k} f(x_1, x_2, \ldots, x_k) \mu(dx_1) \cdots \mu(dx_k)
\]

How can a sequence \(\mu_n \) fail to be compact?

\(\mu_n = \mu \ast \delta_{a_n} \) with \(|a_n| \to \infty \)

\(\mu_n = \frac{1}{2} [\mu \ast \delta_{a_n} + \mu \ast \delta_{-a_n}] \)

\(\mu_n = N(0, nI) \)

The orbit converges.

The limit is in two pieces. \(\mu_1, \mu_2 \) of mass \(\frac{1}{2} \) each.
\[
\Lambda(\xi, f) = \sum_{\tilde{\mu} \in \xi} \int_{(R^3)^k} f(x_1, x_2, \ldots, x_k) \mu(dx_1) \cdots \mu(dx_k)
\]

How can a sequence \(\mu_n \) fail to be compact?

- \(\mu_n = \mu \ast \delta_{a_n} \) with \(|a_n| \to \infty \)
- \(\mu_n = \frac{1}{2} [\mu \ast \delta_{a_n} + \mu \ast \delta_{-a_n}] \)
- \(\mu_n = N(0, nI) \)

The orbit converges.

The limit is in two pieces. \(\mu_1, \mu_2 \) of mass \(\frac{1}{2} \) each.

Becomes dust.
Compactification $\tilde{\mathcal{X}}$.
- Compactification $\tilde{\mathcal{X}}$.
- Collection of orbits $\xi = \{\tilde{\mu}_\alpha\}$
- Compactification $\tilde{\mathcal{X}}$.
- Collection of orbits $\xi = \{\tilde{\mu}_\alpha\}$
- $\sum_\alpha \mu(R^3) = \sum p_\alpha = p \leq 1$
Compactification $\tilde{\mathcal{X}}$.

Collection of orbits $\xi = \{\tilde{\mu}_\alpha\}$

$\sum_\alpha \mu(R^3) = \sum p_\alpha = p \leq 1$

Empty, finite or countable.
Compactification $\tilde{\mathcal{X}}$.

Collection of orbits $\tilde{\xi} = \{\tilde{\mu}_\alpha\}$

$$\sum_\alpha \mu(R^3) = \sum p_\alpha = p \leq 1$$

Empty, finite or countable.

Have a metric.
\[\Lambda(f, \xi) = \sum_{\tilde{\mu} \in \xi} \int f(x_1, \ldots, x_k) \mu(dx_1) \cdots \mu(dx_k) \]
\[\Lambda(f, \xi) = \sum_{\tilde{\mu} \in \xi} \int f(x_1, \ldots, x_k) \mu(dx_1) \cdots \mu(dx_k) \]

\[D(\xi_1, \xi_2) = \sum c_r |\Lambda(f_r, \xi_1) - \Lambda(f_r, \xi_2)| \]
\[\Lambda(f, \xi) = \sum_{\tilde{\mu} \in \xi} \int f(x_1, \ldots, x_k) \mu(dx_1) \cdots \mu(dx_k) \]

\[D(\xi_1, \xi_2) = \sum c_r |\Lambda(f_r, \xi_1) - \Lambda(f_r, \xi_2)| \]

Does \[\Lambda(f, \xi_1) = \Lambda(f, \xi_2), \forall f \]

imply \(\xi_1 = \xi_2 \)?
\[g_N(x_1, x_2, \ldots, x_{2k}) = f(x_1, \ldots, x_k) f(x_{k+1}, \ldots, x_{2k}) \phi_N(x_k - x_{2k}) \]
\[g_N(x_1, x_2, \ldots, x_{2k}) = \\
\phantom{\textstyle{}} f(x_1, \ldots, x_k) f(x_{k+1}, \ldots, x_{2k}) \phi_N(x_k - x_{2k}) \]

\[\Lambda(g_N, \xi) \rightarrow \\
\sum_{\tilde{\mu} \in \xi} \left[\int f(x_1, \ldots, x_k) \mu(dx_1) \cdots \mu(dx_k) \right]^2 \]
\[g_N(x_1, x_2, \ldots, x_{2k}) = \]
\[f(x_1, \ldots, x_k) f(x_{k+1}, \ldots, x_{2k}) \phi_N(x_k - x_{2k}) \]

\[\Lambda(g_N, \xi) \rightarrow \]
\[\sum_{\tilde{\mu} \in \xi} \left[\int f(x_1, \ldots, x_k) \mu(dx_1) \cdots \mu(dx_k) \right]^2 \]

\[\sum_{\tilde{\mu} \in \xi} \left[\int f(x_1, \ldots, x_k) \mu(dx_1) \cdots \mu(dx_k) \right]^r \]
\[g_N(x_1, x_2, \ldots, x_{2k}) = f(x_1, \ldots, x_k)f(x_{k+1}, \ldots, x_{2k})\phi_N(x_k - x_{2k}) \]

\[\Lambda(g_N, \xi) \rightarrow \sum_{\tilde{\mu} \in \xi} \left[\int f(x_1, \ldots, x_k)\mu(dx_1) \cdots \mu(dx_k) \right]^2 \]

\[\sum_{\tilde{\mu} \in \xi} \left[\int f(x_1, \ldots, x_k)\mu(dx_1) \cdots \mu(dx_k) \right]^r \]

Does it mean we know \(\xi \)?
\[g_N(x_1, x_2, \ldots, x_{2k}) = f(x_1, \ldots, x_k) f(x_{k+1}, \ldots, x_{2k}) \phi_N(x_k - x_{2k}) \]

\[\Lambda(g_N, \xi) \rightarrow \sum_{\tilde{\mu} \in \xi} [\int f(x_1, \ldots, x_k) \mu(dx_1) \cdots \mu(dx_k)]^2 \]

\[\sum_{\tilde{\mu} \in \xi} [\int f(x_1, \ldots, x_k) \mu(dx_1) \cdots \mu(dx_k)]^r \]

Does it mean we know \(\xi \)?

Let \(\xi_1 \) and \(\xi_2 \) be two collections such that for every \(f \), \(\{ \int f(x_1, \ldots, x_k) \mu(dx_1) \cdots \mu(dx_k) \} \) are the same as \(\tilde{\mu} \) varies over \(\xi_1 \) or \(\xi_2 \).
Is $\xi_1 = \xi_2$?
Is $\xi_1 = \xi_2$?

Given $\tilde{\mu} \in \xi_1$ consider for $\tilde{\nu} \in \xi_2$,

$$C_{\tilde{\nu}} = \{ f \in F_k : \Lambda(f, \tilde{\mu}) = \Lambda(f, \tilde{\nu}) \}$$
Is $\xi_1 = \xi_2$?

Given $\tilde{\mu} \in \xi_1$ consider for $\tilde{\nu} \in \xi_2$, $C_{\tilde{\nu}} = \{ f \in F_k : \Lambda(f, \tilde{\mu}) = \Lambda(f, \tilde{\nu}) \}$

$C_{\tilde{\nu}}$ is closed. $\bigcup_{\nu} C_{\tilde{\nu}} = F_k$.
Is $\xi_1 = \xi_2$?

Given $\tilde{\mu} \in \xi_1$ consider for $\tilde{\nu} \in \xi_2$, $C_{\tilde{\nu}} = \{ f \in \mathcal{F}_k : \Lambda(f, \tilde{\mu}) = \Lambda(f, \tilde{\nu}) \}$

$C_{\tilde{\nu}}$ is closed. $\bigcup_{\nu} C_{\tilde{\nu}} = \mathcal{F}_k$.

Some $C_{\tilde{\nu}}$ has interior.
Is $\xi_1 = \xi_2$?

Given $\tilde{\mu} \in \xi_1$ consider for $\tilde{\nu} \in \xi_2$,
$$C_{\tilde{\nu}} = \{ f \in \mathcal{F}_k : \Lambda(f, \tilde{\mu}) = \Lambda(f, \tilde{\nu}) \}$$

$C_{\tilde{\nu}}$ is closed. $\bigcup_{\nu} C_{\tilde{\nu}} = \mathcal{F}_k$.

Some $C_{\tilde{\nu}}$ has interior.

It is then equal to \mathcal{F}_k.
Is $\xi_1 = \xi_2$?

Given $\tilde{\mu} \in \xi_1$ consider for $\tilde{\nu} \in \xi_2$,
$$C_{\tilde{\nu}} = \{ f \in \mathcal{F}_k : \Lambda(f, \tilde{\mu}) = \Lambda(f, \tilde{\nu}) \}$$

$C_{\tilde{\nu}}$ is closed. $\bigcup_{\nu} C_{\tilde{\nu}} = \mathcal{F}_k$.

Some $C_{\tilde{\nu}}$ has interior.

It is then equal to \mathcal{F}_k.

All the choices for different k have same mass.
Is $\xi_1 = \xi_2$?

Given $\tilde{\mu} \in \xi_1$ consider for $\tilde{\nu} \in \xi_2$,

$$C_{\tilde{\nu}} = \{ f \in \mathcal{F}_k : \Lambda(f, \tilde{\mu}) = \Lambda(f, \tilde{\nu}) \}$$

$C_{\tilde{\nu}}$ is closed. $\cup_{\nu} C_{\tilde{\nu}} = \mathcal{F}_k$.

Some $C_{\tilde{\nu}}$ has interior.

It is then equal to \mathcal{F}_k.

All the choices for different k have same mass.

Finite number.
One of them has $k >> 1$
- One of them has $k >> 1$
- $\forall f \in \mathcal{F}_k$ and $\forall k \geq 2$
One of them has $k \gg 1$

$\forall f \in \mathcal{F}_k$ and $\forall k \geq 2$

$$\int f(x_1, \ldots, x_k) \mu(dx_1) \cdots \mu(dx_k) =$$
$$\int f(x_1, \ldots, x_k) \nu(dx_1) \cdots \nu(dx_k);$$
One of them has $k \gg 1$

∀$f \in \mathcal{F}_k$ and ∀$k \geq 2$

$$\int f(x_1, \ldots, x_k) \mu(dx_1) \cdots \mu(dx_k) = \int f(x_1, \ldots, x_k) \nu(dx_1) \cdots \nu(dx_k);$$

Does it imply $\mu = \nu \ast \delta_a$ for some a?
One of them has $k >> 1$

$\forall f \in \mathcal{F}_k$ and $\forall k \geq 2$

\[
\int f(x_1, \ldots, x_k) \mu(dx_1) \cdots \mu(dx_k) = \int f(x_1, \ldots, x_k) \nu(dx_1) \cdots \nu(dx_k);
\]

Does it imply $\mu = \nu \ast \delta_a$ for some a?

$\phi = \hat{\mu}(t), \psi = \hat{\nu}(t)$
One of them has \(k \gg 1 \)

\[\forall f \in \mathcal{F}_k \text{ and } \forall k \geq 2 \]

\[\int f(x_1, \ldots, x_k) \mu(dx_1) \cdots \mu(dx_k) = \int f(x_1, \ldots, x_k) \nu(dx_1) \cdots \nu(dx_k); \]

Does it imply \(\mu = \nu \ast \delta_a \) for some \(a \)?

\[\phi = \hat{\mu}(t), \psi = \hat{\nu}(t) \]

\[\prod_{i=1}^{k} \phi(t_i) = \prod_{i=1}^{k} \psi(t_i) \text{ if } \sum_i t_i = 0. \]
One of them has $k \gg 1$

$\forall f \in \mathcal{F}_k$ and $\forall k \geq 2$

$\int f(x_1, \ldots, x_k) \mu(dx_1) \cdots \mu(dx_k) = \int f(x_1, \ldots, x_k) \nu(dx_1) \cdots \nu(dx_k)$;

Does it imply $\mu = \nu * \delta_a$ for some a?

$\phi = \hat{\mu}(t), \psi = \hat{\nu}(t)$

$\pi_{i=1}^k \phi(t_i) = \pi_{i=1}^k \psi(t_i)$ if $\sum_i t_i = 0$.

$\phi(t)\phi(-t) = \psi(t)\psi(-t)$
\[|\phi(t)| = |\psi(t)| \]
\[|\phi(t)| = |\psi(t)| \]

\[\phi(t) = \psi(t)\chi(t) \] on \(G = \{t : |\phi(t)| \neq 0\} \)
\[|\phi(t)| = |\psi(t)| \]

\[\phi(t) = \psi(t) \chi(t) \text{ on } G = \{ t : |\phi(t)| \neq 0 \} \]

\[\chi(t_1) \chi(t_2) \chi(-t_1 - t_2) = 1 \text{ if } t_1, t_2 \in G. \]
\[|\phi(t)| = |\psi(t)| \]

\[\phi(t) = \psi(t)\chi(t) \text{ on } G = \{t : |\phi(t)| \neq 0\} \]

\[\chi(t_1)\chi(t_2)\chi(-t_1 - t_2) = 1 \text{ if } t_1, t_2 \in G. \]

\[\chi(t_1 + t_2) = \chi(t_1)\chi(t_2), \]
\[|\phi(t)| = |\psi(t)| \]
\[\phi(t) = \psi(t) \chi(t) \text{ on } G = \{t : |\phi(t)| \neq 0\} \]
\[\chi(t_1) \chi(t_2) \chi(-t_1 - t_2) = 1 \text{ if } t_1, t_2 \in G. \]
\[\chi(t_1 + t_2) = \chi(t_1) \chi(t_2), \]
\[\chi(nt) = [\chi(t)]^n, \chi(t) = e^{i<a,t>} \]
\(\tilde{\mathcal{M}} \) is dense in \(\tilde{\mathcal{X}} \)
\(\tilde{\mathcal{M}} \) is dense in \(\tilde{\mathcal{X}} \)

\(\mu_1, \ldots, \mu_N \) separate them, rest of the mass is spread out.
\[\widetilde{\mathcal{M}} \] is dense in \(\widetilde{\mathcal{X}} \)

- \(\mu_1, \ldots, \mu_N \) separate them, rest of the mass is spread out.

- Given a sequence \(\tilde{\mu}_n \in \widetilde{\mathcal{M}} \) there is subsequence that converges to a limit \(\xi \) in \(\widetilde{\mathcal{X}} \)
\(\tilde{M} \) is dense in \(\tilde{\mathcal{X}} \)

\(\mu_1, \ldots, \mu_N \) separate them, rest of the mass is spread out.

Given a sequence \(\tilde{\mu}_n \in \tilde{M} \) there is subsequence that converges to a limit \(\xi \) in \(\tilde{\mathcal{X}} \)

Use concentration function.
\(\widetilde{\mathcal{M}} \) is dense in \(\widetilde{X} \)

\(\mu_1, \ldots, \mu_N \) separate them, rest of the mass is spread out.

Given a sequence \(\tilde{\mu}_n \in \widetilde{\mathcal{M}} \) there is subsequence that converges to a limit \(\xi \) in \(\widetilde{X} \)

Use concentration function.

\(q_\mu(r) = \sup_x \mu [B(x, r)] \)
\[\tilde{M} \text{ is dense in } \tilde{X} \]

\[\mu_1, \ldots, \mu_N \text{ separate them, rest of the mass is spread out.} \]

Given a sequence \(\tilde{\mu}_n \in \tilde{M} \) there is subsequence that converges to a limit \(\xi \) in \(\tilde{X} \)

Use concentration function.

\[q_\mu(r) = \sup_x \mu[B(x, r)] \]

\[q_{\mu_n}(k) \to q(k), \quad q(k) \to q \leq 1. \]
\(\tilde{\mathcal{M}} \) is dense in \(\tilde{\mathcal{X}} \)

\(\mu_1, \ldots, \mu_N \) separate them, rest of the mass is spread out.

Given a sequence \(\tilde{\mu}_n \in \tilde{\mathcal{M}} \) there is subsequence that converges to a limit \(\xi \) in \(\tilde{\mathcal{X}} \)

Use concentration function.

\[q_\mu(r) = \sup_x \mu[B(x, r)] \]

\[q_{\mu_n}(k) \to q(k), \quad q(k) \to q \leq 1. \]

Depends only on the orbit.
$q = 1. \mu_n$ is tight after translation.
- $q = 1$. μ_n is tight after translation.
- $q = 0$ disintegrates to dust. tends to $\xi = 0$.
- $q = 1$. μ_n is tight after translation.
- $q = 0$ disintegrates to dust. tends to $\xi = 0$.
- $0 < q < 1$. Can recover a big piece of at least $\frac{q}{2}$, the rest of is far away.
- $q = 1$. μ_n is tight after translation.
- $q = 0$ disintegrates to dust. tends to $\xi = 0$.
- $0 < q < 1$. Can recover a big piece of at least $\frac{q}{2}$, the rest of is far away.
- Repeat and exhaust.
Local upper bounds about the new points in \tilde{X}.
Local upper bounds about the new points in \tilde{X}.

Lower bound is easy.
- Local upper bounds about the new points in \tilde{X}.
- Lower bound is easy.
- $\tilde{\mu}_n \rightarrow \xi$ with $I(\mu_n) \rightarrow I(\xi) = \sum_{\tilde{\mu} \in \xi} I(\mu_j)$
Local upper bounds about the new points in \tilde{X}.

Lower bound is easy.

$\tilde{\mu}_n \rightarrow \xi$ with $I(\mu_n) \rightarrow I(\xi) = \sum_{\tilde{\mu} \in \xi} I(\mu_j)$

$I(\mu) = \sup_{u>0} \left[- \int \frac{1}{2} \frac{\Delta u}{u} d\mu \right]$
Local upper bounds about the new points in \tilde{X}.

Lower bound is easy.

$\tilde{\mu}_n \to \xi$ with $I(\mu_n) \to I(\xi) = \sum_{\tilde{\mu} \in \xi} I(\mu_j)$

$I(\mu) = \sup_{u>0} \left[- \int \frac{1}{2} \Delta u \frac{1}{u} d\mu \right]$

$\exp \left[- \int_0^t \frac{1}{2} \Delta u \frac{1}{u} (x(s)) ds \right] \leq \frac{\sup_x u(x)}{\inf_x u(x)}$
ν compact support, smooth. $u = \nu + c$
ν compact support, smooth. $u = \nu + c$

g(k, \ell, c, a_1, \ldots, a_k, x) = c + \sum_{i=1}^{k} u_i(x + a_i) \phi\left(\frac{x + a_i}{\ell}\right)$
v compact support, smooth. $u = v + c$

$g(k, \ell, c, a_1, \ldots, a_k, x) = c + \sum_{i=1}^{k} u_i(x + a_i)\phi\left(\frac{x+a_i}{\ell}\right)$

$F(u_1, \ldots, u_k, c, \ell, t, \omega)$
v compact support, smooth. $u = v + c$

$g(k, \ell, c, a_1, \ldots, a_k, x) = c + \sum_{i=1}^{k} u_i(x + a_i)\phi\left(\frac{x+a_i}{\ell}\right)$

$F(u_1, \ldots, u_k, c, \ell, t, \omega)$

$$\sup_{a_1, \ldots, a_k} \inf_{i \neq j} \frac{1}{t} \int_{0}^{t} -\frac{1}{2} \Delta g(k, \ell, c, a_1, \ldots, a_k, x(s)) \frac{1}{g(k, \ell, c, a_1, \ldots, a_k, x(s))} ds$$
\[
\sup_{a_1, \ldots, a_k} \inf_{i \neq j} \left| a_i - a_j \right| \geq 4\ell \int_d \frac{-\frac{1}{2} \Delta g(k, \ell, c, a_1, \ldots, a_k, x)}{g(k, \ell, c, a_1, \ldots, a_k, x)} L_t(dx)
\]
\[\sup_{a_1, \ldots, a_k} \inf_{i \neq j} \left| a_i - a_j \right| \geq 4 \ell \int d \frac{-\frac{1}{2} \Delta g(k, \ell, c, a_1, \ldots, a_k, x)}{g(k, \ell, c, a_1, \ldots, a_k, x)} \tilde{F}(u_1, \ldots, u_k, c, \ell, \tilde{L}_t) \]
\[
\sup_{a_1, \ldots, a_k} \inf_{i \neq j} \frac{1}{|a_i - a_j|} \int d \frac{-\frac{1}{2} \sum_{k, \ell, c, a_1, \ldots, a_k, x} g(k, \ell, c, a_1, \ldots, a_k, x)}{L_t(dx)}
\]

\[
\widetilde{F}(u_1, \ldots, u_k, c, \ell, \widetilde{L}_t)
\]

\[
E \left[\exp \left[\int_0^t \frac{-\frac{1}{2} \Delta g(x(s))}{g(x(s))} ds \right] \right] \leq \frac{C}{c}
\]
Small variations in a_i change little.
Small variations in a_i change little.

$|a_i| \leq t^2$?
- Small variations in a_i change little.
- $|a_i| \leq t^2$?
- sup over polynomially many sets of $\{a_i\}$.
- Small variations in a_i change little.
- $|a_i| \leq t^2$?
- sup over polynomially many sets of $\{a_i\}$.
- $u_{i, \ell} = u_i(x) \phi(\frac{x}{\ell})$
\[
\liminf_{\mu \to \xi} \tilde{F}(u_1, \ldots, u_k, c, \ell, \tilde{\mu}) \geq \]

\[
\liminf_{\mu \to \xi} \tilde{F}(u_1, \ldots, u_k, c, \ell, \tilde{\mu}) \geq \\
\sum_{i=1}^{k} \int \frac{-\left(\frac{1}{2} \Delta u_{i,\ell}(x)\right)}{c + u_{i,\ell}(x)} \alpha_i(d\gamma)
\]
\[
\liminf_{\mu \to \xi} \tilde{F}(u_1, \ldots, u_k, c, \ell, \tilde{\mu}) \geq \\
\sum_{i=1}^{k} \int \frac{-\left(\frac{1}{2} \Delta u_{i,\ell}(x)\right)}{c + u_{i,\ell}(x)} \alpha_i(dx) \\
\Lambda(\xi, \ell, c, u_1, \ldots, u_k)
\]
$\lim inf_{\mu \to \xi} \tilde{F}(u_1, \ldots, u_k, c, \ell, \tilde{\mu}) \geq$

$$\sum_{i=1}^{k} \int \frac{-(\frac{1}{2} \Delta u_{i,\ell})(x)}{c + u_{i,\ell}(x)} \alpha_i(dx)$$

$\Lambda(\xi, \ell, c, u_1, \ldots, u_k)$

$$\sup_{c,k,\ell,u_1,\ldots,u_k} \Lambda(\xi, \ell, c, u_1, \ldots, u_k) = \tilde{I}(\xi)$$
\[
\lim \inf_{\mu \to \xi} \tilde{F}(u_1, \ldots, u_k, c, \ell, \tilde{\mu}) \geq \\
\sum_{i=1}^{k} \int \frac{-\left(\frac{1}{2} \Delta u_i, \ell \right)(x)}{c + u_i, \ell(x)} \alpha_i(dx) \\
\Lambda(\xi, \ell, c, u_1, \ldots, u_k) \\
\sup_{c, k, \ell, u_1, \ldots, u_k} \Lambda(\xi, \ell, c, u_1, \ldots, u_k) = \tilde{I}(\xi) \\
\tilde{I}(\xi) = \sum_{\tilde{\mu} \in \xi} I(\mu)
\]
\[F(\mu) = \int \frac{1}{|x_1 - x_2|} \mu(dx_1) \mu(dx_2) \]
\[F(\mu) = \int \frac{1}{|x_1 - x_2|} \mu(dx_1) \mu(dx_2) \]

- Singularity is not a problem.
\[F(\mu) = \int \frac{1}{|x_1 - x_2|} \mu(dx_1) \mu(dx_2) \]

Singularity is not a problem.

Variational problem is

\[
\sup_\xi \left[\Lambda\left(\frac{1}{|x - y|}, \xi\right) - I(\xi) \right]
\]
\[F(\mu) = \int \frac{1}{|x_1 - x_2|} \mu(dx_1) \mu(dx_2) \]

- Singularity is not a problem.
- Variational problem is

\[
\sup_{\xi} \left[\Lambda\left(\frac{1}{|x - y|}, \xi\right) - I(\xi) \right]
\]

- Sup is attained at \(\xi = \{\tilde{\mu}_0\} \), a single orbit of unit mass.
$$F(\mu) = \int \frac{1}{|x_1 - x_2|} \mu(dx_1) \mu(dx_2)$$

- Singularity is not a problem.
- Variational problem is

$$\sup_{\xi} \left[\Lambda\left(\frac{1}{|x - y|}, \xi \right) - I(\xi) \right]$$

- Sup is attained at $\xi = \{\tilde{\mu}_0\}$, a single orbit of unit mass.
- Unique up to translation. On \tilde{X} there is a unique maximum.
The mass under Q_T concentrates in a neighborhood of the orbit.
The mass under Q_T concentrates in a neighborhood of the orbit.

$Q_T \Rightarrow \delta_{\tilde{\mu}_0}$
Thank You