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P.(A) ~ exp|—2 inf I(z) + o(2)]
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Large Deviations.
X, {P.}. P. > d,as e — Q.

J AV RS exp[—1 inf I(x) + 0(1)]

€ z€A €

Lower bound for open sets and upper bound for
closed sets.
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= Conclusions.
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F(z)

€

dQ. = [Z.] ' exp[—2L1dP.
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Qe — 0y

y 1s the unique point such that

F(y) — I(y) = sup,[F(z) — I(z)].

For the proof to work out one needs the upper bound
to hold for all closed sets.
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Markov process. ergodic theorem. Brownian motion
on the circle.
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Markov process. ergodic theorem. Brownian motion

on the circle.

Normalized Lebesgue measure 1s invariant

1 T
L = — 0.\d
T T /() x(s) S

Li(A) = %fOT 14(x(s))ds

() 1s the distribution of L

f exp Tf V p(d))Qr(dp) =
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(S1) is compact.



Q7 has a LDP. du = f(x)dx
_ 1 [f' ()]

I(p) = 5 Js 7o) 0%

M(S?1) is compact.

If we replace S! by R, there is a problem.
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Q1 has a LDP. dy = f(z)dx
_ 1 f'(@)]?
I(p) =5 Jg O
M(S?1) is compact.
If we replace S! by R, there is a problem.

There 1s no invariant measure. dissipative.
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Can remedy 1t by compactifying R by adding oco.
Then M becomes M ;.
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One can compactify space add point at oo
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Can remedy 1t by compactifying R by adding oco.
Then M becomes M ;.

I(0) = 0.

[ V(z)du with V(z) — 0 as |x| — oo are OK.
One can compactify space add point at oo

The missing mass 1s at oo.
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The rate function 1s still the same.

I(f + cb.0) = I(f)

Not good for translation invariant functionals.
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I(f + cb.0) = I(f)

Not good for translation invariant functionals.

Elexpl~ / / 2(£))dsdt]
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The rate function 1s still the same.
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Not good for translation invariant functionals.

Elexpl~ / / 2(£))dsdt]

= limT%oo % 10g ZT
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The rate function 1s still the same.

I(f + cb.0) = I(f)

Not good for translation invariant functionals.

Elexpl~ / / 2(£))dsdt]

= limT%oo % 10g ZT

. [ [ [V - y)f(@)f(y)dedy — I(f)
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ownian Motion in R°.

Yr(w) = %/OT/OT (1) i a:(s)\det




Brownian Motion in R>.

s =g [ [ s

o) =T [ [ —=—Lr(dn)La(ay
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Brownian Motion in R>.

: %/ [ 2 iac(s)!ds‘“

Z7 = Elexp|yr(w
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Brownian Motion in R>.

: %/ [ 2 iac(s)!ds‘“

4 = [GXPWT
dQr = - eXPWT( )] dpP
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The problem i1s translation invariant.
Natural space is X = M(R?)/R’
Not compact.

There 1s local LDP

P|Ly ~ fdx| = exp|—TI(f)]

I(f) = ¢ [ Mo
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1e variational problem

pr| S oy f (@) f(y)dady — I(f)



The variational problem
sup; | [ oo f (@) f(y)dady — I(f)

Has a unique maximizer. (modulo translation)
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Has a unique maximizer. (modulo translation)

One expects on X = X/R3, Qr — 07
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The variational problem
sup; | [ oo f (@) f(y)dady — I(f)

Has a unique maximizer. (modulo translation)

One expects on X = X/R3, Qr — 07

~

Compactify X
Identify the compactification.
Prove the upper and lower bounds at the new points.
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The variational problem
sup; | [ oo f (@) f(y)dady — I(f)

Has a unique maximizer. (modulo translation)

One expects on X = X/R3, Qr — 07

~

Compactify X

Identify the compactification.

Prove the upper and lower bounds at the new points.
Show the supremum now is still attained at the same

f.
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nt work with Chiranjib Mukherjee.
Lt).
) = F(p* dq)



» Joint work with Chiranjib Mukherjee.
m F(Lp).

m F(p) = F(p = dq)
m Examples

I .arce Deviations for Translation Invariant Functionalsof Brownian Occunation Times — . 12/33



» Joint work with Chiranjib Mukherjee.
m F(Lp).

m F(p) = F(p = dq)
m Examples

- F(:u) — f(RB)k f(xlv L2y . 7xk)ﬂ(dx1) C :u(dxk)

I .arce Deviations for Translation Invariant Functionalsof Brownian Occunation Times — . 12/33



» Joint work with Chiranjib Mukherjee.
m F(Lp).

m F(p) = F(p = dq)
m Examples

- F(:u) — f(RB)k f(xlam% SO 7xk)ﬂ(dx1) - :u(dxk)
w flrr+x,...,xp+2) = f(x1, 29, ..., T}

I .arce Deviations for Translation Invariant Functionalsof Brownian Occunation Times — . 12/33



» Joint work with Chiranjib Mukherjee.
m F(Lp).

m F(p) = F(p = dq)
m Examples

- F(:u) — f(RB)k f(xlv L2y . 7xk)ﬂ(dx1) C :u(dxk)

w flrr+x,...,xp+2) = f(x1, 29, ..., T}
m f— 0if sup, ; |7; — x| — o0

I .arce Deviations for Translation Invariant Functionalsof Brownian Occunation Times — . 12/33



» Joint work with Chiranjib Mukherjee.
m F(Lp).

m F(p) = F(p = dq)
m Examples

- F(:u) — f(RB)k f(xlv L2y . 7xk)ﬂ(dx1) C :u(dxk)

w flrr+x,...,xp+2) = f(x1, 29, ..., T}
m f— 0if sup, ; |7; — x| — o0
= = log Elexp[TF]
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How to compactify?
One point compactification 1s not suitable.

I .arce Deviations for Translation Invariant Functionalsof Brownian Occunation Times — . 13/33



How to compactify?
One point compactification 1s not suitable.

Is not translation invariant.
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How to compactify?
One point compactification 1s not suitable.
Is not translation invariant.

1

The unboundedness of Tal 1S not a problem.
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Take a function f(z, ..., ;) thatis translation
invariant and continuous.
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Take a function f(z, ..., ;) thatis translation
invariant and continuous.

Tends to 0 if sup; ; |z; — x| — 0o
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A(f, 1) = f(RB)kz fl@1, @2, ... xg)p(der) - - - pldy)
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JFi._1 can be obtained from F;
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Take a function f(z, ..., ;) thatis translation
invariant and continuous.

Tends to 0 if sup; ; |z; — x| — 0o

F = UpFi

A(f, 1) = f(RB)kz fl@1, @2, ... xg)p(der) - - - pldy)
Countable collection { f;} is enough.

JF1_1 can be obtained from ;.
fk(%; c e ,ili’k) — fk—1($1, c e 7$k—1)¢($1 — ZCk:)
J fllp(dzy) = p(R°) [ fr—11lp(da;)
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100s€ a subsequence so that
noo N f, tn) = A(f) exists for f € F.




Choose a subsequence so that
lim,, oo A(f, ) = A(f) exists for f € F.
What is A(f).
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Choose a subsequence so that
lim,, oo A(f, ) = A(f) exists for f € F.

What is A(f).

Trying to complete with the metric

D(p1, p2) = GIA(Sj, 1) — A(fj, o)
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Choose a subsequence so that
lim,, oo A(f, ) = A(f) exists for f € F.
What is A(f).

Trying to complete with the metric

D(p1, p2) = GIA(Sj, 1) — A(fj, o)

27 14| fjll oo

§={n}h Xjee W(RY) =p <1

Cj
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A(E, f) =
Zﬁeg f(RS)k f(x1, @2, .. xp)pldey) - - - p(day)

How can a sequence p,, fail to be compact?
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A(E, f) =
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How can a sequence p,, fail to be compact?

Uy = (b * 0 with |a,| — oo
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= AL f) =
Zﬁeg f(RS)k f(xla L2, . .. axk>ﬂ(dx1) e M(dwk)

»m How can a sequence 1, fail to be compact?

® Ly = % 0, with |a,| — oo

.Mn:%[lu*6an_|_lu*5_an]
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= AL f) =
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»m How can a sequence 1, fail to be compact?

® Ly = % 0, with |a,| — oo

.Mn:%[lu*6an_|_lu*5_an]
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= AL f) =
Zﬁeg f(RS)k f(xla L2, . .. axk>ﬂ(dx1) e M(dwk)

»m How can a sequence 1, fail to be compact?
W Ly = k0, With |a,| — oo

W fiy = 31 O, +px0g,]

w p, = NO,nl)

m The orbit converges.
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A(E, f) =
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How can a sequence p,, fail to be compact?
Uy = (b * 0 with |a,| — oo
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The orbit converges.

The limit 1s 1n two pieces. 1, (49 of mass % each.
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A(E, f) =
Zﬁeg f(RS)k f(x1, @2, .. xp)pldey) - - - p(day)
How can a sequence p,, fail to be compact?

Uy = (b * 0 with |a,| — oo

’un: %[/’L*6an+lu’*5_an]
tn, = N(0,n 1)

The orbit converges.

1

The limit is in two pieces. 1, pi2 of mass 5 each.

Becomes dust.
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m Compactification X.
= Collection of orbits & = {1, }

)  uR)=>p.=p<1
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Compactification X.
Collection of orbits £ = { /i, }

ZaM(RS) =) Pa=p=<1
Empty, finite or countable.
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m Compactification X.
= Collection of orbits & = {1, }

- Z&M(Rg) =) Pa=p=<1
» Empty, finite or countable.

» Have a metric.
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A(f, &) = Z/f T1, ..., xp)u(dxy) - - p(dey)

nes

D(&1,82) = ZCr’A(fm&) — A(fr, &)
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A(f, &) = Z/f T1, ..., xp)u(dxy) - - p(dey)

SIS

D(&1,8) = Y el A(fr &) = A(fr &)

Does

A(fa 51) — A(fa 52)7 \V/f
imply & = &7
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= 9N(5517332; I ,ka) —
f(xy, . o) f(@ps, - o 2on)ON (28 — Tog)

m Algn, &) —
Z[jeg[f f(xla s 7xk)ﬂ(dx1) B U(dajk)]Q
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= 9N(5517332; I ,ka) —
f(xy, . o) f(@ps, - o 2on)ON (28 — Tog)

m Algn, &) —
Z[jeg[f f(xla s 7xk)ﬂ(dx1) B U(dajk)]Q

- Z[Leg[f f(xla s 7xk)lu(dx1) S :u(dxk)]r

= Does 1t mean we know &7
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gN('Ila L2y ... ,$2k) —
flor, o op) f(@rhgr, - - Tor)ON (2 — o)

A(gN7§> —
Z,}eg[f f(xla s 75576)“(6&51) I :u(dxk)]Q

Z[Leg[f f(xla s 7xk)ﬂ(dx1) S U(dajk)]r

Does it mean we know &£?

Let & and & be two collections such that for every

A f(xr, ... zp)p(dey) - - - u(dxy)} are the same
as (1 varies over &1 or &s.
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={f € Fu : A(f, 1) = A(f, 7))}



mIs fl — 52(7
= Given u € & consider for v € &,

Cy ={f € Fr: A(f, 1) = A(f, D)}
m C5 1s closed. U, (5 = Fi.
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mIs fl — 52(7
= Given u € & consider for v € &,

Cy ={f € Fy: A(f, 1) = A(f, D)}
m C5 1s closed. U, (5 = Fi.
= Some C; has interior.
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Is &1 = &7

Given 11 € &; consider for 7 € &,
Cy ={f € Fr: A(f,p) =A(f,0)}
C'; 1s closed. U, C; = Fi.

Some C'; has interior.

It 1s then equal to Fp.
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Given 11 € &; consider for 7 € &,
Cy ={f € Fr: A(f,p) =A(f,0)}
C'; 1s closed. U, C; = Fi.

Some C'; has interior.

It 1s then equal to Fp.

All the choices for different £ have same mass.
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Is &1 = &7

Given 11 € &; consider for 7 € &,

Cy ={f € Fr : A(f,p) = A(J, D)}

C'; 1s closed. U, C; = F;.

Some C'; has interior.

It 1s then equal to Fp.

All the choices for different £ have same mass.

Finite number.
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e of them has £k >> 1



eofthemhas k£ >> 1
c F. and Vk > 2



w One ofthemhas k >> 1
mVfe F.and Vk > 2

lff(xl,...,xk)u(dxl)--°,u(d$k:) —
ff(xl,...,xk)u(dm)“'V(d%);
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One of them has & >> 1
\V/f c F. and Vk > 2

J f(@1, . z)p(day) - - - plday) =
[ f(z1,...,zp)v(dey) - - - v(day);

Does it imply 1 = v * 9, for some a?
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w One ofthemhas k >> 1
mVfe F.and Vk > 2

lff(xl,...,xk)u(dxl)--°,u(d$k:) —
ff(xl,...,xk)u(dm)“'V(d%);

= Does it imply y = v * 0, for some a?

" 6= j(t) . ¢ = i(1)
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w One ofthemhas k >> 1
mVfe F.and Vk > 2

lff(xl,...,xk)u(dxl)--°,u(d$k:) —
ff(xl,...,xk)u(dm)“'V(d%);

= Does it imply © = v % 0, for some a?
mo=pt), =0t
m i A(t) = T w(t) if Dt = 0.
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m One of them has £ >> 1
mVfe F.and Vk > 2

lff(xl,...,xk)u(dxl)--°,u(d$k) —
ff(xl,...,xk)u(daﬁ)“'V(d%);

= Does it imply © = v % 0, for some a?
mo=i(t),v=0()

m T ¢(t) = T p(t) if 30,8 = 0.

= g(t)p(—1t) = Y(t)p(—t)
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()] = [e(2)
= (t)x(t) on G = {t : |o(t)| # 0}
tl)X(tQ)X(—tl — tg) = 11ifty,t9 € G.



: W( )| = ¥()]
p(t) = (t)x(t) on G = {t : |p(t)| # 0}
(tl) ( )X(_tl — Ifg) = 11f t1,09 € G.

" X
= x(t1 +t2) = x(t1)x(t2),
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)x(—h — 1) = 1ifty, 5 € G.

) = x(t1)x(¢2),
= [x(®)]", x(t) = e~>t>
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1s dense 1in X



M 1s dense in X

41, . .., 4y separate them, rest of the mass 1s spread
out.
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M 1s dense in X

41, . .., 4y separate them, rest of the mass 1s spread
out.

Given a sequence [i,, € M there is subsequence that
converges to a limit £ in X
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M is dense in X
41, . .., 4y separate them, rest of the mass 1s spread
out.

Given a sequence [i,, € M there is subsequence that
converges to a limit £ in X

Use concentration function.
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M 1s dense in X

41, . .., 4y separate them, rest of the mass 1s spread
out.

Given a sequence [i,, € M there is subsequence that
converges to a limit £ in X

Use concentration function.

qu(r) = sup, p[B(z, )]
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M 1s dense in X

41, . .., 4y separate them, rest of the mass 1s spread
out.

Given a sequence [i,, € M there is subsequence that
converges to a limit £ in X

Use concentration function.
qﬂ(r) — SUpy ,U[B(ZL’, T)]
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M 1s dense in X

41, . .., 4y separate them, rest of the mass 1s spread
out.

Given a sequence [i,, € M there is subsequence that
converges to a limit £ in X

Use concentration function.
qu(r) = sup, u[B(z,r)]

Depends only on the orbit.
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L. u, 1s tight after translation.



qg = 1. u, 1s tight after translation.
g = 0 disintegrates to dust. tends to £ = 0.
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qg = 1. u, 1s tight after translation.
g = 0 disintegrates to dust. tends to £ = 0.

0 < g < 1. Can recover a big piece of at least 2, the
rest of 1s far away.
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qg = 1. u, 1s tight after translation.
g = 0 disintegrates to dust. tends to £ = 0.

0 < g < 1. Can recover a big piece of at least 2, the
rest of 1s far away.

Repeat and exhaust.
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cal upper bounds about the new points in X.



Local upper bounds about the new points in X.
Lower bound 1s easy.
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Local upper bounds about the new points in X.
Lower bound 1s easy.

py — § with I(p,) — 1(§) = Zﬁef (1)
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Local upper bounds about the new points in X.
Lower bound 1s easy.

py — § with I(p,) — 1(§) = Zﬁef (1)

1) = supyo [~ 2%
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Local upper bounds about the new points in X.

Lower bound 1s easy.

py — § with I(p,) — 1(§) = Zﬁef (1)

1) = supyo [~ 2%

exp [_ ft %Au (33(8))6[8} < sup,, u(x)

0 wu inf, u(x)
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ompact support, smooth. u = v + ¢



ompact support, smooth. u = v + ¢

A, c,ar, ... a5, x) =c+ Zle ui(erai)gb(‘”;“i)




m v compact support, smooth. u = v + ¢
mg(k, 0, coan,. .. a5, 1) =ct Y0 uix+a;)p(ET%)

m F(uy,...,ug,c b t,w)
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v compact support, smooth. u = v + ¢

gk, l,cay,... a5, x) =c+ Zle wi(x+a;) (25
F(uy,...,ugct,t,w)

ds

1 /t _%Ag(kaga C, a1, ... 7azk,x(8))
Sup —
0 g(k,f,C,al,...,ak,x(S))

al,...ak
infz-;éj |ai—aj | >4¢
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Li(dx)

Sup

ay,...a

/_%Ag(k'7€7 C,ay1, ... 7ak,$)
d g(k,&@ala---aakvm)

~

F(U/l,. = 7’LL]€,C,€, Zt)

" —3Ag(z(s)) C
E{GXP [/O g(I(S)) dS] = C
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all variations 1n a; change little.



all variations 1n a; change little.
| < %7



Small variations in a; change little.
’CLZ" S t2?

sup over polynomially many sets of {a;}.
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Small variations in a; change little.
’CLZ" S t2?
sup over polynomially many sets of {a;}.

Ui = Uz(ZUW(%)
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lim inf ﬁ(ul, ey Uy C U ) >
p—&



hmmfF(ul, ey Uy C U ) >
p—&

(5Au;.)
Z/ it z'(dfl?)
c+uzg



liminf F(uy, ..., ug,c, 0, 0) >
p—E
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liminf F(uy, ..., ug,c, 0, 0) >
p—E
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liminf F(uy, ..., ug,c, 0, 0) >
p—E

IAUM (x)
Z/ c+ u;¢(x) ai(dr)
(5 Ea c, Uy, uk)

rownian Occunat
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n. 29/33






) = [ mayi(don) p(ds)

gularity 1s not a problem.



F(p) = [ mreyp(dey) p(ds)

Singularity is not a problem.

variational problem 1s

sup |A( :

(M=)~ 1)
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F(p) = [ mreyp(dey) p(ds)

Singularity is not a problem.

variational problem 1s

sup |A( :

(M=)~ 1)

Sup is attained at & = {1y}, a single orbit of unit
mass.
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F(p) = [ mreyp(dey) p(ds)

Singularity is not a problem.

variational problem 1s

sup |A( :

(M=)~ 1)

Sup is attained at & = {1y}, a single orbit of unit
mass.

Unique up to translation. On X there is a unique
maximum.

I .aroe Deviations for Translation Invariant Functionalsof Brownian Occunation Times — p. 30/33



The mass under ()7 concentrates in a neighborhood
of the orbit.
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The mass under ()7 concentrates in a neighborhood
of the orbit.

Qr = 0,
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