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ǫ
)]

Lower bound for open sets and upper bound for
closed sets.
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Qǫ → δy

y is the unique point such that

F (y)− I(y) = supx[F (x)− I(x)].

For the proof to work out one needs the upper bound
to hold for all closed sets.

Often one gets local estimates. Pushed to Compact
sets.

e
a
ǫ + e

b
ǫ = e

max{a,b}
ǫ

+o( 1
ǫ
)
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Markov process. ergodic theorem. Brownian motion
on the circle.

Normalized Lebesgue measure is invariant

LT =
1

T

∫ T

0

δx(s)ds

LT (A) =
1
T

∫ T

0 1A(x(s))ds

QT is the distribution of LT∫
exp[T

∫
V (x)µ(dx)]QT (dµ) =

E[exp
∫ T

0 V (x(s))ds]
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QT has a LDP. dµ = f(x)dx

I(µ) = 1
8

∫
S1

[f ′(x)]2

f(x) dx

M(S1) is compact.

If we replace S1 by R, there is a problem.

There is no invariant measure. dissipative.
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Can remedy it by compactifying R by adding ∞.

Then M becomes M≤1.

I(0) = 0.
∫
V (x)dµ with V (x) → 0 as |x| → ∞ are OK.

One can compactify space add point at ∞

The missing mass is at ∞.
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The rate function is still the same.

I(f + cδ∞) = I(f)

Not good for translation invariant functionals.

ZT = E[exp[
1

T

∫ T

0

∫ T

0

V (x(s)− x(t))dsdt]]

ℓ = limT→∞
1
T
logZT

= supf

[ ∫ ∫
V (x− y)f(x)f(y)dxdy − I(f)

]
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1

|x(t)− x(s)|
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ψT (ω) = T

∫ ∫
1

|x− y|
LT (dx)LT (dy)
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Brownian Motion in R3.

ψT (ω) =
1

T

∫ T

0

∫ T

0

1

|x(t)− x(s)|
dsdt

ψT (ω) = T

∫ ∫
1

|x− y|
LT (dx)LT (dy)

ZT = E[exp[ψT (ω)]]

dQT = 1
ZT

exp[ψT (ω)]dP
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The problem is translation invariant.

Natural space is X = M(R3)/R3

Not compact.

There is local LDP

P [LT ≃ fdx] = exp[−TI(f)]
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The problem is translation invariant.

Natural space is X = M(R3)/R3

Not compact.

There is local LDP

P [LT ≃ fdx] = exp[−TI(f)]

I(f) = 1
8

∫ |∇f |2

f
dx
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The variational problem
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]

Has a unique maximizer. (modulo translation)

One expects on X̃ = X/R3, QT → δ
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Compactify X̃

Identify the compactification.

Prove the upper and lower bounds at the new points.
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The variational problem

supf

[ ∫
1

|x−y|f(x)f(y)dxdy − I(f)

]

Has a unique maximizer. (modulo translation)

One expects on X̃ = X/R3, QT → δ
f̃

Compactify X̃

Identify the compactification.

Prove the upper and lower bounds at the new points.

Show the supremum now is still attained at the same
f .
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Joint work with Chiranjib Mukherjee.

F (LT ).

F (µ) = F (µ ∗ δa)

Examples

F (µ) =
∫
(R3)k f(x1, x2, . . . , xk)µ(dx1) · · ·µ(dxk)

f(x1 + x, . . . , xk + x) = f(x1, x2, . . . , xk)

f → 0 if supi,j |xi − xj| → ∞

1
T
logE[exp[TF ]]
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How to compactify?

One point compactification is not suitable.

Is not translation invariant.

The unboundedness of 1
|x| is not a problem.
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Take a function f(x1, . . . , xk) that is translation
invariant and continuous.

Tends to 0 if supi,j |xi − xj| → ∞

F = ∪kFk

Λ(f, µ) =
∫
(R3)k f(x1, x2, . . . , xk)µ(dx1) · · ·µ(dxk)

Countable collection {fj} is enough.

Fk−1 can be obtained from Fk

fk(x1, . . . , xk) = fk−1(x1, . . . , xk−1)φ(x1 − xk)∫
fkΠµ(dxi) → µ(R3)

∫
fk−1Πµ(dxi)
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Choose a subsequence so that

limn→∞Λ(f, µn) = λ(f) exists for f ∈ F .

What is λ(f).
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What is λ(f).

Trying to complete with the metric

D(µ1, µ2) =
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cj|Λ(fj, µ1)− Λ(fj, µ2)|

cj =
1
2j

1
1+‖fj‖∞
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Choose a subsequence so that

limn→∞Λ(f, µn) = λ(f) exists for f ∈ F .

What is λ(f).

Trying to complete with the metric

D(µ1, µ2) =
∑

cj|Λ(fj, µ1)− Λ(fj, µ2)|

cj =
1
2j

1
1+‖fj‖∞

ξ = {µ̃},
∑

µ̃∈ξ µ(R
3) = p ≤ 1
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Λ(ξ, f) =∑
µ̃∈ξ
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Λ(ξ, f) =∑
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How can a sequence µn fail to be compact?
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Λ(ξ, f) =∑
µ̃∈ξ

∫
(R3)k f(x1, x2, . . . , xk)µ(dx1) · · ·µ(dxk)

How can a sequence µn fail to be compact?

µn = µ ∗ δan with |an| → ∞

µn = 1
2 [µ ∗ δan + µ ∗ δ−an]

µn = N(0, n I)
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Λ(ξ, f) =∑
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∫
(R3)k f(x1, x2, . . . , xk)µ(dx1) · · ·µ(dxk)

How can a sequence µn fail to be compact?

µn = µ ∗ δan with |an| → ∞

µn = 1
2 [µ ∗ δan + µ ∗ δ−an]

µn = N(0, n I)

The orbit converges.
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(R3)k f(x1, x2, . . . , xk)µ(dx1) · · ·µ(dxk)

How can a sequence µn fail to be compact?

µn = µ ∗ δan with |an| → ∞

µn = 1
2 [µ ∗ δan + µ ∗ δ−an]

µn = N(0, n I)

The orbit converges.

The limit is in two pieces. µ1, µ2 of mass 1
2 each.
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Λ(ξ, f) =∑
µ̃∈ξ

∫
(R3)k f(x1, x2, . . . , xk)µ(dx1) · · ·µ(dxk)

How can a sequence µn fail to be compact?

µn = µ ∗ δan with |an| → ∞

µn = 1
2 [µ ∗ δan + µ ∗ δ−an]

µn = N(0, n I)

The orbit converges.

The limit is in two pieces. µ1, µ2 of mass 1
2 each.

Becomes dust.
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Compactification X̃ .

Collection of orbits ξ = {µ̃α}
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Compactification X̃ .

Collection of orbits ξ = {µ̃α}∑
α µ(R

3) =
∑
pα = p ≤ 1
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Compactification X̃ .

Collection of orbits ξ = {µ̃α}∑
α µ(R

3) =
∑
pα = p ≤ 1

Empty, finite or countable.
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Compactification X̃ .

Collection of orbits ξ = {µ̃α}∑
α µ(R

3) =
∑
pα = p ≤ 1

Empty, finite or countable.

Have a metric.
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Λ(f, ξ) =
∑

µ̃∈ξ

∫
f(x1, . . . , xk)µ(dx1) · · ·µ(dxk)
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Λ(f, ξ) =
∑

µ̃∈ξ

∫
f(x1, . . . , xk)µ(dx1) · · ·µ(dxk)

D(ξ1, ξ2) =
∑

cr|Λ(fr, ξ1)− Λ(fr, ξ2)|
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Λ(f, ξ) =
∑

µ̃∈ξ

∫
f(x1, . . . , xk)µ(dx1) · · ·µ(dxk)

D(ξ1, ξ2) =
∑

cr|Λ(fr, ξ1)− Λ(fr, ξ2)|

Does

Λ(f, ξ1) = Λ(f, ξ2),∀f

imply ξ1 = ξ2?
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gN(x1, x2, . . . , x2k) =
f(x1, . . . , xk)f(xk+1, . . . , x2k)φN(xk − x2k)
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gN(x1, x2, . . . , x2k) =
f(x1, . . . , xk)f(xk+1, . . . , x2k)φN(xk − x2k)

Λ(gN , ξ) →∑
µ̃∈ξ[

∫
f(x1, . . . , xk)µ(dx1) · · ·µ(dxk)]

2
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gN(x1, x2, . . . , x2k) =
f(x1, . . . , xk)f(xk+1, . . . , x2k)φN(xk − x2k)

Λ(gN , ξ) →∑
µ̃∈ξ[

∫
f(x1, . . . , xk)µ(dx1) · · ·µ(dxk)]

2

∑
µ̃∈ξ[

∫
f(x1, . . . , xk)µ(dx1) · · ·µ(dxk)]

r
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gN(x1, x2, . . . , x2k) =
f(x1, . . . , xk)f(xk+1, . . . , x2k)φN(xk − x2k)

Λ(gN , ξ) →∑
µ̃∈ξ[

∫
f(x1, . . . , xk)µ(dx1) · · ·µ(dxk)]

2

∑
µ̃∈ξ[

∫
f(x1, . . . , xk)µ(dx1) · · ·µ(dxk)]

r

Does it mean we know ξ?
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gN(x1, x2, . . . , x2k) =
f(x1, . . . , xk)f(xk+1, . . . , x2k)φN(xk − x2k)

Λ(gN , ξ) →∑
µ̃∈ξ[

∫
f(x1, . . . , xk)µ(dx1) · · ·µ(dxk)]

2

∑
µ̃∈ξ[

∫
f(x1, . . . , xk)µ(dx1) · · ·µ(dxk)]

r

Does it mean we know ξ?

Let ξ1 and ξ2 be two collections such that for every

f , {
∫
f(x1, . . . , xk)µ(dx1) · · ·µ(dxk)} are the same

as µ̃ varies over ξ1 or ξ2.
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Is ξ1 = ξ2?
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Is ξ1 = ξ2?

Given µ̃ ∈ ξ1 consider for ν̃ ∈ ξ2,
Cν̃ = {f ∈ Fk : Λ(f, µ̃) = Λ(f, ν̃)}
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Is ξ1 = ξ2?

Given µ̃ ∈ ξ1 consider for ν̃ ∈ ξ2,
Cν̃ = {f ∈ Fk : Λ(f, µ̃) = Λ(f, ν̃)}

Cν̃ is closed. ∪νCν̃ = Fk.
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Is ξ1 = ξ2?

Given µ̃ ∈ ξ1 consider for ν̃ ∈ ξ2,
Cν̃ = {f ∈ Fk : Λ(f, µ̃) = Λ(f, ν̃)}

Cν̃ is closed. ∪νCν̃ = Fk.

Some Cν̃ has interior.
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Is ξ1 = ξ2?

Given µ̃ ∈ ξ1 consider for ν̃ ∈ ξ2,
Cν̃ = {f ∈ Fk : Λ(f, µ̃) = Λ(f, ν̃)}

Cν̃ is closed. ∪νCν̃ = Fk.

Some Cν̃ has interior.

It is then equal to Fk.
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Is ξ1 = ξ2?

Given µ̃ ∈ ξ1 consider for ν̃ ∈ ξ2,
Cν̃ = {f ∈ Fk : Λ(f, µ̃) = Λ(f, ν̃)}

Cν̃ is closed. ∪νCν̃ = Fk.

Some Cν̃ has interior.

It is then equal to Fk.

All the choices for different k have same mass.
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Is ξ1 = ξ2?

Given µ̃ ∈ ξ1 consider for ν̃ ∈ ξ2,
Cν̃ = {f ∈ Fk : Λ(f, µ̃) = Λ(f, ν̃)}

Cν̃ is closed. ∪νCν̃ = Fk.

Some Cν̃ has interior.

It is then equal to Fk.

All the choices for different k have same mass.

Finite number.
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One of them has k >> 1
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One of them has k >> 1

∀f ∈ Fk and ∀k ≥ 2
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One of them has k >> 1

∀f ∈ Fk and ∀k ≥ 2∫
f(x1, . . . , xk)µ(dx1) · · ·µ(dxk) =∫
f(x1, . . . , xk)ν(dx1) · · · ν(dxk);
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One of them has k >> 1

∀f ∈ Fk and ∀k ≥ 2∫
f(x1, . . . , xk)µ(dx1) · · ·µ(dxk) =∫
f(x1, . . . , xk)ν(dx1) · · · ν(dxk);

Does it imply µ = ν ∗ δa for some a?
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One of them has k >> 1

∀f ∈ Fk and ∀k ≥ 2∫
f(x1, . . . , xk)µ(dx1) · · ·µ(dxk) =∫
f(x1, . . . , xk)ν(dx1) · · · ν(dxk);

Does it imply µ = ν ∗ δa for some a?

φ = µ̂(t) , ψ = ν̂(t)
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One of them has k >> 1

∀f ∈ Fk and ∀k ≥ 2∫
f(x1, . . . , xk)µ(dx1) · · ·µ(dxk) =∫
f(x1, . . . , xk)ν(dx1) · · · ν(dxk);

Does it imply µ = ν ∗ δa for some a?

φ = µ̂(t) , ψ = ν̂(t)

πki=1φ(ti) = πki=1ψ(ti) if
∑

i ti = 0.
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One of them has k >> 1

∀f ∈ Fk and ∀k ≥ 2∫
f(x1, . . . , xk)µ(dx1) · · ·µ(dxk) =∫
f(x1, . . . , xk)ν(dx1) · · · ν(dxk);

Does it imply µ = ν ∗ δa for some a?

φ = µ̂(t) , ψ = ν̂(t)

πki=1φ(ti) = πki=1ψ(ti) if
∑

i ti = 0.

φ(t)φ(−t) = ψ(t)ψ(−t)
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|φ(t)| = |ψ(t)|

Large Deviations for Translation Invariant Functionalsof Brownian Occupation Times – p. 22/33



|φ(t)| = |ψ(t)|

φ(t) = ψ(t)χ(t) on G = {t : |φ(t)| 6= 0}
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|φ(t)| = |ψ(t)|

φ(t) = ψ(t)χ(t) on G = {t : |φ(t)| 6= 0}

χ(t1)χ(t2)χ(−t1 − t2) = 1 if t1, t2 ∈ G.
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|φ(t)| = |ψ(t)|

φ(t) = ψ(t)χ(t) on G = {t : |φ(t)| 6= 0}

χ(t1)χ(t2)χ(−t1 − t2) = 1 if t1, t2 ∈ G.

χ(t1 + t2) = χ(t1)χ(t2),

Large Deviations for Translation Invariant Functionalsof Brownian Occupation Times – p. 22/33



|φ(t)| = |ψ(t)|

φ(t) = ψ(t)χ(t) on G = {t : |φ(t)| 6= 0}

χ(t1)χ(t2)χ(−t1 − t2) = 1 if t1, t2 ∈ G.

χ(t1 + t2) = χ(t1)χ(t2),

χ(nt) = [χ(t)]n, χ(t) = ei<a,t>
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M̃ is dense in X̃
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M̃ is dense in X̃

µ1, . . . , µN separate them, rest of the mass is spread
out.
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M̃ is dense in X̃

µ1, . . . , µN separate them, rest of the mass is spread
out.

Given a sequence µ̃n ∈ M̃ there is subsequence that

converges to a limit ξ in X̃
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M̃ is dense in X̃

µ1, . . . , µN separate them, rest of the mass is spread
out.

Given a sequence µ̃n ∈ M̃ there is subsequence that

converges to a limit ξ in X̃

Use concentration function.
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M̃ is dense in X̃

µ1, . . . , µN separate them, rest of the mass is spread
out.

Given a sequence µ̃n ∈ M̃ there is subsequence that

converges to a limit ξ in X̃

Use concentration function.

qµ(r) = supx µ[B(x, r)]
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M̃ is dense in X̃

µ1, . . . , µN separate them, rest of the mass is spread
out.

Given a sequence µ̃n ∈ M̃ there is subsequence that

converges to a limit ξ in X̃

Use concentration function.

qµ(r) = supx µ[B(x, r)]

qµn
(k) → q(k), q(k) → q ≤ 1.
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M̃ is dense in X̃

µ1, . . . , µN separate them, rest of the mass is spread
out.

Given a sequence µ̃n ∈ M̃ there is subsequence that

converges to a limit ξ in X̃

Use concentration function.

qµ(r) = supx µ[B(x, r)]

qµn
(k) → q(k), q(k) → q ≤ 1.

Depends only on the orbit.
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q = 1. µn is tight after translation.
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q = 1. µn is tight after translation.

q = 0 disintegrates to dust. tends to ξ = 0.
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q = 1. µn is tight after translation.

q = 0 disintegrates to dust. tends to ξ = 0.

0 < q < 1. Can recover a big piece of at least q
2 , the

rest of is far away.
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q = 1. µn is tight after translation.

q = 0 disintegrates to dust. tends to ξ = 0.

0 < q < 1. Can recover a big piece of at least q
2 , the

rest of is far away.

Repeat and exhaust.
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Local upper bounds about the new points in X̃ .
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Local upper bounds about the new points in X̃ .

Lower bound is easy.
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Local upper bounds about the new points in X̃ .

Lower bound is easy.

µ̃n → ξ with I(µn) → I(ξ) =
∑

µ̃∈ξ I(µj)
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Local upper bounds about the new points in X̃ .

Lower bound is easy.

µ̃n → ξ with I(µn) → I(ξ) =
∑

µ̃∈ξ I(µj)

I(µ) = supu>0

[
−

∫ 1

2
∆u

u
dµ

]
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Local upper bounds about the new points in X̃ .

Lower bound is easy.

µ̃n → ξ with I(µn) → I(ξ) =
∑

µ̃∈ξ I(µj)

I(µ) = supu>0

[
−

∫ 1

2
∆u

u
dµ

]

exp
[
−

∫ t

0

1

2
∆u

u
(x(s))ds

]
≤ supx u(x)

infx u(x)
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v compact support, smooth. u = v + c
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v compact support, smooth. u = v + c

g(k, ℓ, c, a1, . . . , ak, x) = c+
∑k

i=1 ui(x+ai)φ(
x+ai
ℓ
)
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v compact support, smooth. u = v + c

g(k, ℓ, c, a1, . . . , ak, x) = c+
∑k

i=1 ui(x+ai)φ(
x+ai
ℓ
)

F (u1, . . . , uk, c, ℓ, t, ω)
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v compact support, smooth. u = v + c

g(k, ℓ, c, a1, . . . , ak, x) = c+
∑k

i=1 ui(x+ai)φ(
x+ai
ℓ
)

F (u1, . . . , uk, c, ℓ, t, ω)

sup
a1,...ak

infi 6=j |ai−aj |≥4ℓ

1

t

∫ t

0

−1
2∆g(k, ℓ, c, a1, . . . , ak, x(s))

g(k, ℓ, c, a1, . . . , ak, x(s))
ds
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sup
a1,...ak

infi 6=j |ai−aj |≥4ℓ

∫

d

−1
2∆g(k, ℓ, c, a1, . . . , ak, x)

g(k, ℓ, c, a1, . . . , ak, x)
Lt(dx)
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sup
a1,...ak

infi 6=j |ai−aj |≥4ℓ

∫

d

−1
2∆g(k, ℓ, c, a1, . . . , ak, x)

g(k, ℓ, c, a1, . . . , ak, x)
Lt(dx)

F̃ (u1, . . . , uk, c, ℓ, L̃t)

Large Deviations for Translation Invariant Functionalsof Brownian Occupation Times – p. 27/33



sup
a1,...ak

infi 6=j |ai−aj |≥4ℓ

∫

d

−1
2∆g(k, ℓ, c, a1, . . . , ak, x)

g(k, ℓ, c, a1, . . . , ak, x)
Lt(dx)

F̃ (u1, . . . , uk, c, ℓ, L̃t)

E

[
exp

[ ∫ t

0

−1
2∆g(x(s))

g(x(s))
ds
]]

≤
C

c
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Small variations in ai change little.
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Small variations in ai change little.

|ai| ≤ t2?
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Small variations in ai change little.

|ai| ≤ t2?

sup over polynomially many sets of {ai}.
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Small variations in ai change little.

|ai| ≤ t2?

sup over polynomially many sets of {ai}.

ui,ℓ = ui(x)φ(
x
ℓ
)
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lim inf
µ→ξ

F̃ (u1, . . . , uk, c, ℓ, µ̃) ≥
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lim inf
µ→ξ

F̃ (u1, . . . , uk, c, ℓ, µ̃) ≥

k∑

i=1

∫
−(12∆ui,ℓ)(x)

c+ ui,ℓ(x)
αi(dx)
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lim inf
µ→ξ

F̃ (u1, . . . , uk, c, ℓ, µ̃) ≥

k∑

i=1

∫
−(12∆ui,ℓ)(x)

c+ ui,ℓ(x)
αi(dx)

Λ(ξ, ℓ, c, u1, . . . , uk)
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lim inf
µ→ξ

F̃ (u1, . . . , uk, c, ℓ, µ̃) ≥

k∑

i=1

∫
−(12∆ui,ℓ)(x)

c+ ui,ℓ(x)
αi(dx)

Λ(ξ, ℓ, c, u1, . . . , uk)

sup
c,k,ℓ,u1,...uk

Λ(ξ, ℓ, c, u1, . . . , uk) = Ĩ(ξ)
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lim inf
µ→ξ

F̃ (u1, . . . , uk, c, ℓ, µ̃) ≥

k∑

i=1

∫
−(12∆ui,ℓ)(x)

c+ ui,ℓ(x)
αi(dx)

Λ(ξ, ℓ, c, u1, . . . , uk)

sup
c,k,ℓ,u1,...uk

Λ(ξ, ℓ, c, u1, . . . , uk) = Ĩ(ξ)

Ĩ(ξ) =
∑

µ̃∈ξ I(µ)
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F (µ) =
∫

1
|x1−x2|

µ(dx1)µ(dx2)
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F (µ) =
∫

1
|x1−x2|

µ(dx1)µ(dx2)

Singularity is not a problem.

Large Deviations for Translation Invariant Functionalsof Brownian Occupation Times – p. 30/33



F (µ) =
∫

1
|x1−x2|

µ(dx1)µ(dx2)

Singularity is not a problem.

variational problem is

sup
ξ

[
Λ(

1

|x− y|
, ξ)− I(ξ)

]
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F (µ) =
∫

1
|x1−x2|

µ(dx1)µ(dx2)

Singularity is not a problem.

variational problem is

sup
ξ

[
Λ(

1

|x− y|
, ξ)− I(ξ)

]

Sup is attained at ξ = {µ̃0}, a single orbit of unit
mass.
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F (µ) =
∫

1
|x1−x2|

µ(dx1)µ(dx2)

Singularity is not a problem.

variational problem is

sup
ξ

[
Λ(

1

|x− y|
, ξ)− I(ξ)

]

Sup is attained at ξ = {µ̃0}, a single orbit of unit
mass.

Unique up to translation. On X̃ there is a unique
maximum.
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The mass under QT concentrates in a neighborhood
of the orbit.

Large Deviations for Translation Invariant Functionalsof Brownian Occupation Times – p. 31/33



The mass under QT concentrates in a neighborhood
of the orbit.

QT ⇒ δµ̃0
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Thank You
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