Scaling Limits

S.R.S. Varadhan Courant Institute, NYU

Michigan State University April 1, 2015

We model phenomena at a very small (micro) scale.

• We are interested in answers to question that are posed on a large (macro) scale.

- We are interested in answers to question that are posed on a large (macro) scale.
- How do we make the transition?

- We are interested in answers to question that are posed on a large (macro) scale.
- How do we make the transition?
- Depends on the context.

We model phenomena at a very small (micro) scale.

- Because that is where we understand the phenomenon and can make a reasonable model.
- We are interested in answers to question that are posed on a large (macro) scale.
- How do we make the transition?
- Depends on the context.
- **Some times it is straight forward.**

• We model phenomena at a very small (micro) scale.

- Because that is where we understand the phenomenon and can make a reasonable model.
- We are interested in answers to question that are posed on a large (macro) scale.
- How do we make the transition?
- Depends on the context.
- **Some times it is straight forward.**
- Some times it is very complicated

• We model phenomena at a very small (micro) scale.

- Because that is where we understand the phenomenon and can make a reasonable model.
- We are interested in answers to question that are posed on a large (macro) scale.
- How do we make the transition?
- Depends on the context.
- **Some times it is straight forward.**
- Some times it is very complicated
- We will look at some examples.

Consider the lattice Z_h^d with spacing h.

Consider the lattice Z^d_h with spacing h. G ⊂ R^d with boundary ∂G

Consider the lattice Z^d_h with spacing h.
 G ⊂ R^d with boundary ∂G

$$\sum_{y:y\simeq x} [f_h(y) - f_h(x)] = 0 \quad x \in G$$

Consider the lattice Z_h^d with spacing h. $G \subset R^d$ with boundary ∂G $\sum_{y:y\simeq x} [f_h(y) - f_h(x)] = 0 \quad x \in G$ $f_h(y) = g(y)$ is given for $y \notin G, y \simeq G$.

Consider the lattice Z_h^d with spacing h. $\square G \subset R^d$ with boundary ∂G $\sum \left[f_h(\overline{y}) - \overline{f_h(x)} \right] = 0 \quad x \in \overline{G}$ $y:y\simeq x$ $f_h(y) = g(y)$ is given for $y \notin G, y \simeq G$. • As $h \to 0$ we get $f_h \to f$ $\Delta f = 0, x \in G; \text{ and } f|_{\partial G} = g$

Consider the lattice Z_h^d with spacing h. $\square G \subset R^d$ with boundary ∂G $\sum \left[f_h(y) - f_h(x) \right] = 0 \quad x \in G$ $y:y\simeq x$ $f_h(y) = g(y)$ is given for $y \notin G, y \simeq G$. • As $h \to 0$ we get $f_h \to f$ $\Delta f = 0, x \in G; \text{ and } f|_{\partial G} = g$ Courant-Friedrichs-Lewy 1928. Math. Ann.

Variational form

Variational formMinimize

 $\sum [u(x) - u(y)]^2$ $x,y:x\simeq y$

over $u: u = g \in G^c$

Variational formMinimize

$$\sum_{x,y:x\simeq y} [u(x) - u(y)]^2$$

over $u: u = g \in G^c$

Converges to the solution that minimizes

Variational formMinimize

$$\sum_{x,y:x\simeq y} [u(x) - u(y)]^2$$

over $u: u = g \in G^c$

Converges to the solution that minimizes

$$\int_{G} |\nabla u|^2 dx$$

over u : u = g on ∂G .

Probability theory has an explanation.

Probability theory has an explanation. Random Walk, S_n = ∑_j X_j and X_j = ±e_i with probability ¹/_{2d}

Probability theory has an explanation.
Random Walk, S_n = ∑_j X_j and X_j = ±e_i with probability ¹/_{2d}
Scales to Brownian Motion.

Probability theory has an explanation.
Random Walk, S_n = ∑_j X_j and X_j = ±e_i with probability 1/2d
Scales to Brownian Motion.
√(d/n) S(nt) → β(t).

Probability theory has an explanation.
Random Walk, S_n = ∑_j X_j and X_j = ±e_i with probability 1/2d
Scales to Brownian Motion.
√(d/n S(nt) → β(t)).
E[g(x_τ)]

2. Periodic medium. On R^d. L = $\nabla a(x) \cdot \nabla$

2. Periodic medium. On R^d. L = ∇a(x) ⋅ ∇

a(x) is periodic of period 1 in each x_i .

- On R^d . $L = \nabla a(x) \cdot \nabla$
- a(x) is periodic of period 1 in each x_i .
- Interested in scale of size h^{-1} in space and h^{-2} in time.

On
$$R^d$$
. $L = \nabla a(x) \cdot \nabla$

a(x) is periodic of period 1 in each x_i .

Interested in scale of size h^{-1} in space and h^{-2} in time.

$$L_h = \nabla \cdot a(\frac{x}{h}) \nabla$$

On
$$R^d$$
. $L = \nabla a(x) \cdot \nabla$

 $\square a(x)$ is periodic of period 1 in each x_i .

Interested in scale of size h^{-1} in space and h^{-2} in time.

$$L_h = \nabla \cdot a(\frac{x}{h})\nabla$$

 $|L_h \to L = \nabla \cdot \bar{a} \nabla|$

$$u_t = L_h u; \quad u(0, x) = f(x)$$

$$u_t = L_h u; \quad u(0, x) = f(x)$$

$L_h u = f \text{ for } x \in G; \ u(y) = g(y) \text{ for } y \in \partial G$

$$u_t = L_h u; \quad u(0, x) = f(x)$$

$$L_h u = f$$
 for $x \in G$; $u(y) = g(y)$ for $y \in \partial G$

$$u_t = L_h u; \quad u(0, x) = f(x)$$

$$L_h u = f$$
 for $x \in G$; $u(y) = g(y)$ for $y \in \partial G$

$$\langle \xi, \bar{a}\xi \rangle = \inf_{w} \int_{T^d} \langle (\xi - \nabla w), a(x)(\xi - \nabla w) \rangle dx$$

$$u_t = L_h u; \quad u(0, x) = f(x)$$

$$L_h u = f$$
 for $x \in G$; $u(y) = g(y)$ for $y \in \partial G$

$$\langle \xi, \bar{a}\xi \rangle = \inf_{w} \int_{T^d} \langle (\xi - \nabla w), a(x)(\xi - \nabla w) \rangle dx$$

The inf is taken over periodic functions w

$$u_t = L_h u; \quad u(0, x) = f(x)$$

$$L_h u = f$$
 for $x \in G$; $u(y) = g(y)$ for $y \in \partial G$

$$\langle \xi, \bar{a}\xi \rangle = \inf_{w} \int_{T^d} \langle (\xi - \nabla w), a(x)(\xi - \nabla w) \rangle dx$$

The inf is taken over periodic functions w

In
$$d = 1$$
, $\bar{a} = [\int_0^1 \frac{1}{a(x)} dx]^{-1}$

Scaling Limits -p.7/29
3. Random Medium. (Stationary and ergodic)

3. Random Medium. (Stationary and ergodic) (Ω, F, P), {T_x}; x ∈ R^d

$$L_{h,\omega} = \nabla \cdot a(T_{\frac{x}{h}}\omega)\nabla$$

$$L_{h,\omega} = \nabla \cdot a(T_{\frac{x}{h}}\omega)\nabla$$

$$\langle \xi, \bar{a}\xi \rangle = \inf_{w^*} E^P[\langle (w^* - \xi), a(\omega)(w^* - \xi) \rangle]$$

$$L_{h,\omega} = \nabla \cdot a(T_{\frac{x}{h}}\omega)\nabla$$

$$\langle \xi, \bar{a}\xi \rangle = \inf_{w^*} E^P[\langle (w^* - \xi), a(\omega)(w^* - \xi) \rangle]$$
$$\int w^* dP = 0, D_i w_j^* = D_j w_i^*$$

$$L_h = \sum_{i,j} a_{i,j} \left(\frac{x}{h}\right) D_i D_j$$

$$L_h = \sum_{i,j} a_{i,j} \left(\frac{x}{h}\right) D_i D_j$$

• $\int \phi dx = 1, \phi > 0.$ Periodic

$$L^*\phi = \sum_{i,j} D_i D_j [a_{i,j}(x)\phi(x)] = 0$$

$$L_h = \sum_{i,j} a_{i,j} \left(\frac{x}{h}\right) D_i D_j$$

• $\int \phi dx = 1, \phi > 0$. Periodic

$$L^*\phi = \sum_{i,j} D_i D_j [a_{i,j}(x)\phi(x)] = 0$$

$$\bar{a} = \int_{T^d} a(x)\phi(x)dx$$

$$L_h = \sum_{i,j} a_{i,j} \left(\frac{x}{h}\right) D_i D_j$$

 $\int \phi dx = 1, \phi > 0.$ Periodic

$$L^*\phi = \sum_{i,j} D_i D_j [a_{i,j}(x)\phi(x)] = 0$$

$$\bar{a} = \int_{T^d} a(x)\phi(x)dx$$

In d = 1 the same answer $\int [\frac{1}{a(x)} dx]^{-1}$

Scaling Limits – p. 9/29

$$L_{h,\omega} = \sum_{i,j} a_{i,j} (T_{\frac{x}{h}}\omega) D_i D_j$$

and

 $\bar{a} = E[a(\omega)\phi(\omega)]$

$$L_{h,\omega} = \sum_{i,j} a_{i,j} (T_{\frac{x}{h}}\omega) D_i D_j$$

and

$\bar{a} = E[a(\omega)\phi(\omega)]$ $\bullet \phi(\omega) \text{ is a positive } L_1 \text{ function on } (\Omega, \mathcal{F}, P)$

$$L_{h,\omega} = \sum_{i,j} a_{i,j} (T_{\frac{x}{h}}\omega) D_i D_j$$

and

$$\bar{a} = E[a(\omega)\phi(\omega)]$$

φ(ω) is a positive L₁ function on (Ω, F, P)
It is the unique weak sense solution of

$$L^*\phi = \sum_{i,j} D_i D_j [a_{i,j}(\omega)\phi(\omega)] = 0$$

$$L_{h,\omega} = \sum_{i,j} a_{i,j} (T_{\frac{x}{h}}\omega) D_i D_j$$

and

$$\bar{a} = E[a(\omega)\phi(\omega)]$$

φ(ω) is a positive L₁ function on (Ω, F, P)
It is the unique weak sense solution of

$$L^*\phi = \sum_{i,j} D_i D_j [a_{i,j}(\omega)\phi(\omega)] = 0$$

 $\square D_i$ is well defined on $L_2(P)$

Scaling Limits – p. 10/29

6. Nonlinear versions.

$$u_t + \frac{1}{2}\Delta u + H(x, \nabla u) = 0; \quad u(T, x) = f(\frac{x}{T})$$

$$u_t + \frac{1}{2}\Delta u + H(x, \nabla u) = 0; \quad u(T, x) = f(\frac{x}{T})$$

Rescale $(t, x) \to (\frac{t}{T}, \frac{x}{T}), \epsilon = T^{-1}.$
$$u_t + \frac{\epsilon}{2}\Delta u + H(\frac{x}{\epsilon}, \nabla u) = 0; \quad u(1, x) = f(x)$$

$$u_t + \frac{1}{2}\Delta u + H(x, \nabla u) = 0; \quad u(T, x) = f(\frac{x}{T})$$

Rescale $(t, x) \rightarrow (\frac{t}{T}, \frac{x}{T}), \epsilon = T^{-1}.$
$$u_t + \frac{\epsilon}{2}\Delta u + H(\frac{x}{\epsilon}, \nabla u) = 0; \quad u(1, x) = f(x)$$
$$u_t + \bar{H}(\nabla u) = 0; \quad u(1, x) = f(x)$$

Scaling Limits – p. 11/29

• How is $\overline{H}(p)$ related to H(x, p)?

How is H (p) related to H(x, p)? L(x,q) is the Legendre transform.

How is H(p) related to H(x, p)?
L(x,q) is the Legendre transform.
Consider A_b = ¹/₂Δ+ < b(x), ∇ > on the torus.

How is H(p) related to H(x, p)?
L(x,q) is the Legendre transform.
Consider A_b = ¹/₂∆+ < b(x), ∇ > on the torus.
A^{*}_bφ_b = 0

How is H(p) related to H(x, p)? $\square L(x,q)$ is the Legendre transform. • Consider $\mathcal{A}_b = \frac{1}{2}\Delta + \langle b(x), \nabla \rangle$ on the torus. $\blacksquare \mathcal{A}_b^* \phi_b = 0$ $\bar{H}(p) =$ $\sup_{b(\cdot)} [< p, \int b(x)\phi_b(x) > - \int L(x, b(x))\phi_b(x)]$

In the random case ϕ_b does not always exist.

In the random case \$\phi_b\$ does not always exist. Limit the variational formula to b such that \$\phi_b\$ exists.

In the random case \$\phi_b\$ does not always exist.
Limit the variational formula to \$b\$ such that \$\phi_b\$ exists.
Goes under the general name of "homogenization"

- In the random case ϕ_b does not always exist.
- Limit the variational formula to b such that ϕ_b exists.
- Goes under the general name of "homogenization"
- J.L.Lions, P.L.Lions, A.Bensoussan,
 G.C.Papanicolaou, F.Rezakhanlou, E.Kosygina, P.E.
 Suganidis & V.

7. Interacting particle systems.

7. Interacting particle systems. On Z^d or R^d we have particles.

7. Interacting particle systems.

• On Z^d or R^d we have particles.

They interact with each other and move. From a distance (rescaled) it looks a cloud of particles moving.

7. Interacting particle systems.

• On Z^d or R^d we have particles.

- They interact with each other and move. From a distance (rescaled) it looks a cloud of particles moving.
- The density at time t is a some $\rho(t, x)$.

- **7**. Interacting particle systems.
- On Z^d or R^d we have particles.
- They interact with each other and move. From a distance (rescaled) it looks a cloud of particles moving.
- The density at time t is a some $\rho(t, x)$.
- How does it evolve?

Simple exclusion process.

Simple exclusion process.

$$\mathcal{L}f = \sum_{x,y} \eta(x)(1 - \eta(y))p(y - x)[f(\eta^{x,y}) - f(\eta)]$$

Simple exclusion process.

$$\mathcal{L}f = \sum_{x,y} \eta(x)(1 - \eta(y))p(y - x)[f(\eta^{x,y}) - f(\eta)]$$

Invariant distributions are Bernoulli.
Simple exclusion process.

$$\mathcal{L}f = \sum_{x,y} \eta(x)(1 - \eta(y))p(y - x)[f(\eta^{x,y}) - f(\eta)]$$

Invariant distributions are Bernoulli.
Rescale x o Nx, t o N²t.

Simple exclusion process.

$$\mathcal{L}f = \sum_{x,y} \eta(x)(1 - \eta(y))p(y - x)[f(\eta^{x,y}) - f(\eta)]$$

Invariant distributions are Bernoulli. Rescale $x \to Nx, t \to N^2 t$.

Start far away from equilibrium.

Simple exclusion process.

$$\mathcal{L}f = \sum_{x,y} \eta(x)(1 - \eta(y))p(y - x)[f(\eta^{x,y}) - f(\eta)]$$

- Invariant distributions are Bernoulli.
- Rescale $x \to Nx$, $t \to N^2 t$.

Start far away from equilibrium.

How does the density evolve to equilibrium?

 $F_J(\eta) = \frac{1}{N^d} \sum J(\frac{x}{N})\eta(x)$

$$F_J(\eta) = \frac{1}{N^d} \sum J(\frac{x}{N})\eta(x)$$

Compute $N^k \mathcal{L} F_J$

$$F_J(\eta) = \frac{1}{N^d} \sum J(\frac{x}{N})\eta(x)$$

Compute $N^k \mathcal{L} F_J$ k = 1 if $\sum_z zp(z) = m \neq 0$

$$F_J(\eta) = \frac{1}{N^d} \sum J(\frac{x}{N})\eta(x)$$

Compute $N^k \mathcal{L} F_J$ k = 1 if $\sum_z zp(z) = m \neq 0$ k = 2 if $\sum_z zp(z) = 0$

$$F_J(\eta) = \frac{1}{N^d} \sum J(\frac{x}{N})\eta(x)$$

Compute N^k LF_J
k = 1 if ∑_z zp(z) = m ≠ 0
k = 2 if ∑_z zp(z) = 0
If p(z) = p(-z) it is a lot easier.

$$N^{2-d} \sum_{x,y} \eta(x)(1-\eta(y))p(y-x)[f(\eta^{x,y}) - f(\eta)]$$

= $\frac{N^{2-d}}{2} \sum_{x,y} [\eta(x) - \eta(y)]p(y-x)J[(\frac{y}{N}) - J(\frac{x}{N})]$
 $\simeq \frac{1}{2N^d} \sum_x C_{i,j}(\partial_i \partial_j f)(\frac{x}{N})$

$$N^{2-d} \sum_{x,y} \eta(x)(1-\eta(y))p(y-x)[f(\eta^{x,y}) - f(\eta)]$$

= $\frac{N^{2-d}}{2} \sum_{x,y} [\eta(x) - \eta(y)]p(y-x)J[(\frac{y}{N}) - J(\frac{x}{N})]$
 $\simeq \frac{1}{2N^d} \sum_x C_{i,j}(\partial_i \partial_j f)(\frac{x}{N})$

• where $C_{i,j} = \sum_{z} z_i z_j p(z)$

$$\rho_t = \frac{1}{2} \nabla \cdot C \nabla \rho$$

$$\rho_t = \frac{1}{2} \nabla \cdot C \nabla \rho$$

Interaction does not seem to play a role.

$$\rho_t = \frac{1}{2} \nabla \cdot C \nabla \rho$$

 Interaction does not seem to play a role.
 But if p(z) is replaced by p(z) + q(z)/N with ∑z zq(z) = m

$$\rho_t = \frac{1}{2} \nabla \cdot C \nabla \rho$$

Interaction does not seem to play a role. But if p(z) is replaced by $p(z) + \frac{q(z)}{N}$ with $\sum_{z} zq(z) = m$

$$\rho_t = \frac{1}{2} \nabla \cdot C \nabla \rho - \nabla \cdot m \rho (1 - \rho)$$

$$\rho_t = \frac{1}{2} \nabla \cdot C \nabla \rho$$

Interaction does not seem to play a role. But if p(z) is replaced by $p(z) + \frac{q(z)}{N}$ with $\sum_{z} zq(z) = m$

$$\rho_t = \frac{1}{2} \nabla \cdot C \nabla \rho - \nabla \cdot m \rho (1 - \rho)$$

The average of $\eta(x)(1 - \eta(y))$ is replaced by its local expectation $\rho(1 - \rho)$.

If $\sum_{z} zp(z) = m \neq 0$ then with $x \to Nx$ and $t \to Nt$,

If $\sum_{z} zp(z) = m \neq 0$ then with $x \to Nx$ and $t \to Nt$,

 $\rho_t + \nabla \cdot m\rho(1-\rho) = 0$

If $\sum_{z} zp(z) = m \neq 0$ then with $x \to Nx$ and $t \to Nt$, $\rho_t + \nabla \cdot m\rho(1-\rho) = 0$ If p(z) is not symmetric but $\sum_{z} p(z) = 0$, $t \to N^2 t$, C now depends on ρ

If
$$\sum_{z} zp(z) = m \neq 0$$
 then with $x \to Nx$ and
 $t \to Nt$,
 $\rho_t + \nabla \cdot m\rho(1-\rho) = 0$
If $p(z)$ is not symmetric but $\sum_{z} p(z) = 0$,
 $t \to N^2 t$, C now depends on ρ

$$\rho_t = \frac{1}{2} \nabla \cdot C(\rho) \nabla \rho$$

If
$$\sum_{z} zp(z) = m \neq 0$$
 then with $x \to Nx$ and
 $t \to Nt$,
 $\rho_t + \nabla \cdot m\rho(1-\rho) = 0$
If $p(z)$ is not symmetric but $\sum_{z} p(z) = 0$,
 $t \to N^2 t$, *C* now depends on ρ

$$\rho_t = \frac{1}{2} \nabla \cdot C(\rho) \nabla \rho$$

 $\Box C$ is not easily computable.

Generator

 $\mathcal{L}_{N} = N^{2} \sum p(y - x)\eta(x)(1 - \eta(y))[F(\eta^{x,y}) - F(\eta)]$ x,y

Generator

$$\mathcal{L}_{N} = N^{2} \sum_{x,y} p(y-x)\eta(x)(1-\eta(y))[F(\eta^{x,y})-F(\eta)]$$

$$F_J(\eta) = \langle J, \rho \rangle = \frac{1}{N^d} \sum_x J(\frac{x}{N}) \eta(x)$$

$$\mathcal{L}_{\mathcal{N}}\mathcal{F}_{\mathcal{J}} = N^{2-d} \sum_{x,y} p(y-x)\eta(x)(1-\eta(y))$$
$$\times \left[J(\frac{y}{N}) - J(\frac{x}{N})\right]$$

$$\mathcal{L}_{\mathcal{N}}\mathcal{F}_{\mathcal{J}} = N^{2-d} \sum_{x,y} p(y-x)\eta(x)(1-\eta(y))$$
$$\times \left[J(\frac{y}{N}) - J(\frac{x}{N})\right]$$
$$\simeq N^{1-d} \sum_{x} \nabla J(\frac{x}{N}) \cdot W(x,\eta)$$

• if $p(\cdot)$ is symmetric

$$W_{i}(x,\eta) = \frac{1}{2} \sum_{j} C_{i,j}[\eta(x+e_{j}) - \eta(x)]$$

Can do summation by parts.

• if $p(\cdot)$ is symmetric

$$W_{i}(x,\eta) = \frac{1}{2} \sum_{j} C_{i,j} [\eta(x+e_{j}) - \eta(x)]$$

Can do summation by parts. Otherwise use E[W] = 0 in every equilibrium.

$$W_i(x,\eta) \simeq \frac{1}{2} \sum_j C_{i,j} [\eta(x+e_j) - \eta(x)] + ??$$

if $p(\cdot)$ is symmetric

$$W_{i}(x,\eta) = \frac{1}{2} \sum_{j} C_{i,j} [\eta(x+e_{j}) - \eta(x)]$$

Can do summation by parts. Otherwise use E[W] = 0 in every equilibrium.

$$W_i(x,\eta) \simeq \frac{1}{2} \sum_j C_{i,j} [\eta(x+e_j) - \eta(x)] + ??$$

The ?? can be ignored

• $E[W_i] = 0$ in all equilibria form a Hilbert space.

E[W_i] = 0 in all equilibria form a Hilbert space. There is subspace that are negligible. .

E[W_i] = 0 in all equilibria form a Hilbert space. There is subspace that are negligible. . Codimension d in the Hilbert space.

E[*W_i*] = 0 in all equilibria form a Hilbert space.
There is subspace that are negligible. .
Codimension *d* in the Hilbert space.
Density gradients η(x + e_j) - η(x) are complementary.

 $\blacksquare E[W_i] = 0$ in all equilibria form a Hilbert space.

- **There is subspace that are negligible.**.
- **Codimension** *d* in the Hilbert space.
- Density gradients $\eta(x + e_j) \eta(x)$ are complementary.
- **Done in each equilibrium** P_{ρ} with $C_{i,j}(\rho)$

 $\blacksquare E[W_i] = 0$ in all equilibria form a Hilbert space.

- **There is subspace that are negligible.**.
- Codimension *d* in the Hilbert space.
- Density gradients $\eta(x + e_j) \eta(x)$ are complementary.
- Done in each equilibrium P_ρ with C_{i,j}(ρ)
 Large Deviation theory.

8. Back to the symmetric case. Tagged Particles.

8. Back to the symmetric case. Tagged Particles. What about the motion of a tagged particle in equilibrium at density *ρ*?
8. Back to the symmetric case. Tagged Particles. What about the motion of a tagged particle in equilibrium at density *ρ*?

Diffuses. $\lambda^{-1}x(\lambda^2 t) \to B(t)$.

8. Back to the symmetric case. Tagged Particles. What about the motion of a tagged particle in equilibrium at density ρ? Diffuses. λ⁻¹x(λ²t) → B(t).

Covariance is $S(\rho)$

$$L_t = \frac{1}{2}\nabla \cdot S(\rho(t,x))\nabla + \frac{(S(\rho(t,x)) - C)\nabla\rho}{2\rho}\nabla$$

$$L_t = \frac{1}{2} \nabla \cdot S(\rho(t, x)) \nabla + \frac{(S(\rho(t, x)) - C) \nabla \rho}{2\rho} \nabla$$

 $\Box L_t^* \rho = \frac{1}{2} \nabla C \nabla \rho$

$$L_t = \frac{1}{2}\nabla \cdot S(\rho(t,x))\nabla + \frac{(S(\rho(t,x)) - C)\nabla\rho}{2\rho}\nabla$$

 $L_t^* \rho = \frac{1}{2} \nabla C \nabla \rho$ 9. Trajectories

$$L_t = \frac{1}{2} \nabla \cdot S(\rho(t, x)) \nabla + \frac{(S(\rho(t, x)) - C) \nabla \rho}{2\rho} \nabla$$

 $L_t^* \rho = \frac{1}{2} \nabla C \nabla \rho$ 9. Trajectories

$$\frac{1}{N^d} \sum_{i} \delta_{\frac{x_i(N^2 \cdot)}{N}} \to P$$

$$L_t = \frac{1}{2} \nabla \cdot S(\rho(t, x)) \nabla + \frac{(S(\rho(t, x)) - C) \nabla \rho}{2\rho} \nabla$$

 $L_t^* \rho = \frac{1}{2} \nabla C \nabla \rho$ 9. Trajectories

$$\frac{1}{N^d} \sum_i \delta_{\frac{x_i(N^2 \cdot)}{N}} \to P$$

• Markov with generator L_t .

$$\dot{q}_i = p_i, \quad \dot{p}_i = -\sum_j (\nabla V)(x_i - x_j)$$

$$\dot{q}_i = p_i, \quad \dot{p}_i = -\sum_j (\nabla V)(x_i - x_j)$$

Conserved quantities. ρ , u, e.

$$\dot{q}_i = p_i, \quad \dot{p}_i = -\sum_j (\nabla V)(x_i - x_j)$$

Conserved quantities. ρ, u, e.
First order hyperbolic PDE for them.

$$\dot{q}_i = p_i, \quad \dot{p}_i = -\sum_j (\nabla V)(x_i - x_j)$$

Conserved quantities. ρ, u, e.
First order hyperbolic PDE for them.
Connect the ODE's to PDE

Gibbs States. Constant ρ , u, e.

Gibbs States. Constant ρ, u, e. Local Gibbs state, Slowly varying ρ, u, e

$$\begin{bmatrix} \rho_0, u_0, T_0 \end{bmatrix} \longrightarrow Local Gibbs \downarrow Euler \qquad \qquad \downarrow Liouville \begin{bmatrix} \rho_t, u_t, T_t \end{bmatrix} \longrightarrow do not match$$

$$\begin{bmatrix} \rho_0, u_0, T_0 \end{bmatrix} \longrightarrow Local Gibbs \downarrow Euler \qquad \qquad \downarrow Liouville \begin{bmatrix} \rho_t, u_t, T_t \end{bmatrix} \longrightarrow do not match$$

Diagram does not commute!

$$[\rho_0, u_0, T_0] \longrightarrow Local Gibbs \downarrow Euler \qquad \qquad \downarrow Liouville [\rho_t, u_t, T_t] \longrightarrow do not match$$

Diagram does not commute!

It almost does after some noisy modification.

Work done over 25 years. Presutti, De Masi, H.T.Yau, Olla, Rezakhanlou, Quastel, Kosygina, V

Work done over 25 years. Presutti, De Masi, H.T.Yau, Olla, Rezakhanlou, Quastel, Kosygina, V

Thank You