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We model phenomena at a very small (iicro) scale.

Because that 1s where we understand the
phenomenon and can make a reasonable model.

We are interested in answers to question that are
posed on a large (macro) scale.

How do we make the transition?
Depends on the context.

Some times it 1s straight forward.
Some times it 1s very complicated

We will look at some examples.
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Consider the lattice 2 ;f with spacing h.
G C R? with boundary G

> hly) = @) =0 zed

Y: Y~
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Consider the lattice 2 ;f with spacing h.
G C R? with boundary G

> ) = fH@)=0 ze€G

Yy~
fn(y) = g(y) is given fory ¢ G,y ~ G .
As h — O we get fr, — f

Af=0, zeG;and flog =g
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Consider the lattice 2 ;f with spacing h.
G C R? with boundary G

> ) = fH@)=0 ze€G

Yy~
fn(y) = g(y) is given fory ¢ G,y ~ G .
As h — O we get fr, — f

Af=0, zeG;and flog =g

Courant-Friedrichs-Lewy 1928. Math. Ann.
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riational form



riational form
nimize

> [u(x) = u(y))?
T,y T2y

eru:u=gqg¢€ G



Variational form
Minimize
> ulz) —u(y))
T,y Ty
overu:u =g € G°

Converges to the solution that minimizes
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Variational form
Minimize

D lul@) —u(y)

T,Y: T2y
overu:u =g € G°
Converges to the solution that minimizes

/ Vul*dx
G

over u : u = g on 0G.
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Probability theory has an explanation.
Random Walk, S, = > 7 Xjand X; = +e; with
probability %
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Probability theory has an explanation.
Random Walk, S, = > 7 Xjand X; = +e; with
probability %

Scales to Brownian Motion.

\45(nt) — B(0).
Elg(z)]

Scaline Limits — o. 5/29



Periodic medium.



Periodic medium.

RY L =Va(z) -V



2. Periodic medium.
On RY. L = Va(z) -V

a(x) is periodic of period 1 in each z;.
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2. Periodic medium.
On RY. L = Va(x) -V
a(x) is periodic of period 1 in each z;.

Interested in scale of size h~! in space and A~ ° in
time.

Lh =V - &(%)V

Lh%LZV°C_ZV
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Lyu=f for x € G; uly) =g(y) for y € 0G

a has a simple variational representation.

Scaline Limits — p. 7/29



wp = Lpu;  u(0,2) = f(x)

Lyu=f for x € G; uly) =g(y) for y € 0G

a has a simple variational representation.

(€.a€) = inf [ (€~ Vu),a@)(€ ~ Vu)da

w

Scaline Limits — p. 7/29



wp = Lpu;  u(0,2) = f(x)

Lyu=f for x € G; uly) =g(y) for y € 0G

a has a simple variational representation.

(€.a€) = inf [ (€~ Vu),a@)(€ ~ Vu)da

w

The 1nf 1s taken over periodic functions w

Scaline Limits — p. 7/29



wp = Lpu;  u(0,2) = f(x)

Lyu=f for x € G; uly) =g(y) for y € 0G

a has a simple variational representation.

(€.a€) = inf [ (€~ Vu),a@)(€ ~ Vu)da

w

The 1nf 1s taken over periodic functions w

Ind=1,a=[[) -du]™

a(x
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3. Random Medium. (Stationary and ergodic)
(Q, F,P),{T,};x € R

a(z,w) = a(T,w) is a random positive definite
matrix valued function on R
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3. Random Medium. (Stationary and ergodic)
(Q, F,P),{T,};x € R

a(z,w) = a(T,w) is a random positive definite
matrix valued function on R

Lh,w =V - a(T%w)V
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3. Random Medium. (Stationary and ergodic)
(Q, F,P),{T,};x € R

a(z,w) = a(T,w) is a random positive definite
matrix valued function on R

Lh,w =V - a(T%w)V

(€.a¢) = inf E”[{(w" — €), a(w)(w’ — ©))]

[w*dP =0, Dyw: = Djw;
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4. Balanced Case. What 1f it 1s periodic but

Xz
Ly=) a;,j(7)DiD;

1,

[ ¢dx =1, ¢ > 0. Periodic

L¢ = Z D;Djla; ;(z)¢(z)] = 0
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4. Balanced Case. What 1f it 1s periodic but

Xz
Ly=) a;,j(7)DiD;

1,

[ ¢dx =1, ¢ > 0. Periodic

L¢ = Z D;Djla; ;(z)¢(z)] = 0

G = /T a(w)@(x)da

In d = 1 the same answer [ [@dx]_l
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Random case.
Lyw =Y a;;(T:w)D;D;
1,]

and
a = Ela(w)o(w)]
¢(w) is a positive I function on (€2, F, P)
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Random case.
Lyw =Y a;;(T:w)D;D;
1,]
and
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Random case.
Lyw =Y a;;(T:w)D;D;
1,]
and
a = Ela(w)o(w)]
¢(w) is a positive I function on (€2, F, P)

It 1s the unique weak sense solution of

L¢ = Z D, Djla; j(w)p(w)] =0

D; is well defined on Lo(P)
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6. Nonlinear versions.

Hamilton-Jacobi-Bellman equations. H(z, p).
Periodic (or Random)
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Periodic (or Random)

X

Uy + %AquH(x,Vu) =0; u(T,z)= f(T)
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6. Nonlinear versions.

Hamilton-Jacobi-Bellman equations. H(z, p).
Periodic (or Random)

|
ut+§Au+H(x,Vu) =0; u(T,x)= f(%

Rescale (t,z) — (+,%),e =T"".

up + %Au+ H(%,Vu) =0; u(l,z) = f(z)
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6. Nonlinear versions.

Hamilton-Jacobi-Bellman equations. H(z, p).
Periodic (or Random)

|
ut+§Au+H(x,Vu) =0; u(T,x)= f(%

Rescale (t,z) — (+,%),e =T"".
up + %Au — H(%, Vu)=0; u(l,z)= f(z)

w + H(Vu) =0; u(l,z) = f(x)
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How is H (p) related to H(z,p)?

L(x,q) is the Legendre transform.

Consider A, = %AJr < b(x), V > on the torus.
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L(x,q) is the Legendre transform.
Consider A, = %AJr < b(x), V > on the torus.
Aoy =0

Scaline Limits — p. 12/29



How is H (p) related to H(z,p)?

L(x,q) is the Legendre transform.

Consider A, = :A+ < b(x),V > on the torus.
Ay oy =0

H(p) =

< p / () dy(z) > / L(z, b(x)) ()]
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In the random case ¢; does not always exist.

Limit the variational formula to b such that ¢; exists.
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In the random case ¢; does not always exist.
Limit the variational formula to b such that ¢; exists.

Goes under the general name of "homogenization”
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In the random case ¢; does not always exist.
Limit the variational formula to b such that ¢; exists.
Goes under the general name of "homogenization”

J.L..Lions, P.L.Lions, A.Bensoussan,
G.C.Papanicolaou, F.Rezakhanlou, E.Kosygina, P.E.
Suganidis & V.
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On Z% or R? we have particles.

They interact with each other and move. From a
distance (rescaled) 1t looks a cloud of particles
moving.
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7. Interacting particle systems.

On Z% or R? we have particles.

They interact with each other and move. From a
distance (rescaled) 1t looks a cloud of particles
moving.

The density at time ¢ is a some p(t, ).

How does 1t evolve?

Scaline Limits — p. 14/29



ple exclusion process.



ple exclusion process.

f= Zn(m)(l —n(y))ply —2)[f(n™) — f(n)]



Simple exclusion process.

Lf=) @)l —=ny)ply—=)f0n") = fn)]

Invariant distributions are Bernoulli.
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Simple exclusion process.

Lf=) @)l —=ny)ply—=)f0n") = fn)]

Invariant distributions are Bernoulli.
Rescale + — Nz, t — N2t
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Simple exclusion process.
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Invariant distributions are Bernoulli.
Rescale + — Nz, t — N2t

Start far away from equilibrium.
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Simple exclusion process.

Lf=) @)l —=ny)ply—=)f0n") = fn)]

Invariant distributions are Bernoulli.

Rescale + — Nz, t — N2t

Start far away from equilibrium.

How does the density evolve to equilibrium?
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Fy(n) = 37 3 (o n(@)

ympute N*LE;
Lif Y 2p(z) =m #0



» ook at

Fy(n) = 3 3 T (5 )n()

m Compute N*LF)}

mk=1if > zp(z)=m#0
mk=2if) 2p(2)=0
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» ook at

Fy(n) = 3 3 T (5 )n()

m Compute N*LF)}

mk=1if > zp(z)=m#0
mk=2if) 2p(2)=0
w If p(2) = p(—=2) it is a lot easier.
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The evolution of density 1s given by
|
Pt = iv - C'Vp

Interaction does not seem to play a role.
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The evolution of density 1s given by
|
Pt = iv - C'Vp

Interaction does not seem to play a role.

But if p(z) is replaced by p(z) + % with

D> . 2q(2) =m

1
pr =5V - CVp—=V-mp(l—p)
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The evolution of density 1s given by
|
Pt = iv - C'Vp

Interaction does not seem to play a role.

But if p(z) is replaced by p(z) + % with

D> . 2q(2) =m

1
pr =5V - CVp—=V-mp(l—p)

The average of n(x)(1 — n(y)) is replaced by its
local expectation p(1 — p).
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> .. 2p(z) = m # 0 then with z — Nz and
Nt,

pr+V -mp(l—p)=0



If > zp(z) = m # 0 then with x — Nz and
t — Nt,

pt+V -mp(l —p) =0
If p(2) is not symmetric but > ©_p(z) = 0,

Scaline Limits — p. 19/29



If > zp(z) = m # 0 then with x — Nz and
t — Nt,

pr +V-mp(l—p)=0
If p(2) is not symmetric but > ©_p(z) = 0,
t — N?*t, C' now depends on p
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If > zp(z) = m # 0 then with x — Nz and
t — Nt,

pr +V-mp(l—p)=0
If p(2) is not symmetric but > ©_p(z) = 0,
t — N?*t, C' now depends on p

1
pr =5V -Cp)Vp

C' is not easily computable.
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nerator

— N? Zp (y—a)n(x)(1—n(y))[F (") —F(n)]



Generator

Ly = N> ply—)n(z)(1—n(y)[F(n™")—F(n)

L,Y

Fy(n) =< J.p>= =2 3" I (5 n(@)
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if p(-) is symmetric

Wila.n) = 5 3 Gl + ¢j) — n(e)]

J

Can do summation by parts.
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if p(-) is symmetric

Wila.n) = 5 3 Gl + ¢j) — n(e)]

J
Can do summation by parts.

Otherwise use E|WW] = 0 in every equilibrium.

Wi, n) == 5 37 Cigln(e + ) = n(@)] + 77
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if p(-) is symmetric
|
Wiz, n) = 3 Y Cijln(z+e;) —n(x)]
J
Can do summation by parts.

Otherwise use E|WW] = 0 in every equilibrium.
1
Wiz, n) = 3 Y Cijln(z +e5) — nlx)] + 77
J

The ?? can be 1gnored
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E|W;| = 0 in all equilibria form a Hilbert space.

There 1s subspace that are negligible. .
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Codimension d in the Hilbert space.

Density gradients n(z + e;) — n(x) are
complementary.
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E|W;| = 0 in all equilibria form a Hilbert space.

There 1s subspace that are negligible. .

Codimension d in the Hilbert space.

Density gradients n(z + e;) — n(x) are
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Done in each equilibrium P, with C; ;(p)
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E|W;| = 0 in all equilibria form a Hilbert space.

There 1s subspace that are negligible. .

Codimension d in the Hilbert space.

Density gradients n(z + e;) — n(x) are
complementary.

Done in each equilibrium P, with C; ;(p)

Large Deviation theory.
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Back to the symmetric case. Tagged Particles.



8. Back to the symmetric case. Tagged Particles.

What about the motion of a tagged particle in
equilibrium at density p?
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What about the motion of a tagged particle in
equilibrium at density p?

Diffuses. A 'z(\°t) — B(t).
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8. Back to the symmetric case. Tagged Particles.

What about the motion of a tagged particle in
equilibrium at density p?

Diffuses. A 'z(\°t) — B(t).

Covariance is S(p)
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What about in non-equilibrium?

I — %v S(p(t. )V 4 (5(p(t, 7)) — C)Vpg,

2p
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What about in non-equilibrium?
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Lip=3VCVp
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Lip=3VCVp

9. Trajectories
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What about in non-equilibrium?

I — %v S(p(t. )V 4 (5(p(t, 7)) — C)Vpg,

2p

Lip=3VCVp

9. Trajectories
|
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What about in non-equilibrium?

L — %v StV + 2 (p(t’x;)p_ CVry

Lip=3VCVp

9. Trajectories

Na g > P

Markov with generator L.
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. Classical Mechanics-Fluid flow.
DE’s

i = Di, DPi= — Z(VV)(CUZ — T;)
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10. Classical Mechanics-Fluid flow.
ODE’s

i = Di, DPi= — Z(VV)(% — T;)

J

Conserved quantities. p, u, e.
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10. Classical Mechanics-Fluid flow.

ODE’s

¢i =Di, Di= — Z(VV)(% — ;)
J

Conserved quantities. p, u, e.

First order hyperbolic PDE for them.
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10. Classical Mechanics-Fluid flow.
ODE’s

¢i =Di, Di= — Z(VV)(% — ;)
J
Conserved quantities. p, u, e.

First order hyperbolic PDE for them.
Connect the ODE’s to PDE
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bbs States. Constant p, u, e.
cal Gibbs state, Slowly varying p, u, e



Gibbs States. Constant p, u, e.
Local Gibbs state, Slowly varying p, u, e
Liouville flow
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Gibbs States. Constant p, u, e.

Local Gibbs state, Slowly varying p, u, e
Liouville flow

Euler Flow.
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Gibbs States. Constant p, u, e.

Local Gibbs state, Slowly varying p, u, e
Liouville flow

Euler Flow.

po, U, To] —— Local Gibbs

lEuler lLiOumﬁlle

e, ur, Ty| —— do not match
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Gibbs States. Constant p, u, e.

Local Gibbs state, Slowly varying p, u, e
Liouville flow

Euler Flow.

po, U, To] —— Local Gibbs

lEuler lLiOumﬁlle

e, ur, Ty| —— do not match

Diagram does not commute!
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Gibbs States. Constant p, u, e.

Local Gibbs state, Slowly varying p, u, e
Liouville flow

Euler Flow.

po, U, To] —— Local Gibbs

lEuler lLiOumﬁlle

e, ur, Ty| —— do not match

Diagram does not commute!
It almost does after some noisy modification.
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Work done over 25 years. Presutti, De Masi,
H.T.Yau, Olla, Rezakhanlou, Quastel, Kosygina, V
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Work done over 25 years. Presutti, De Masi,
H.T.Yau, Olla, Rezakhanlou, Quastel, Kosygina, V
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Thank You



