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We model phenomena at a very small (micro) scale.

Because that is where we understand the
phenomenon and can make a reasonable model.

We are interested in answers to question that are
posed on a large (macro) scale.

How do we make the transition?

Depends on the context.

Some times it is straight forward.

Some times it is very complicated

We will look at some examples.
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Consider the lattice Zd
h with spacing h.

G ⊂ Rd with boundary ∂G

∑

y:y≃x

[fh(y)− fh(x)] = 0 x ∈ G

fh(y) = g(y) is given for y /∈ G, y ≃ G .

As h → 0 we get fh → f

∆f = 0, x ∈ G; and f |∂G = g

Courant-Friedrichs-Lewy 1928. Math. Ann.
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Variational form

Minimize
∑

x,y:x≃y

[u(x)− u(y)]2

over u : u = g ∈ Gc
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Variational form

Minimize
∑

x,y:x≃y

[u(x)− u(y)]2

over u : u = g ∈ Gc

Converges to the solution that minimizes

∫

G

|∇u|2dx

over u : u = g on ∂G.
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Probability theory has an explanation.

Random Walk, Sn =
∑

j Xj and Xj = ±ei with

probability 1
2d

Scales to Brownian Motion.
√

d
n
S(nt) → β(t).

E[g(xτ)]
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2. Periodic medium.

On Rd. L = ∇a(x) · ∇

a(x) is periodic of period 1 in each xi.

Interested in scale of size h−1 in space and h−2 in
time.

Lh = ∇ · a(
x

h
)∇

Lh → L = ∇ · ā∇
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ut = Lhu; u(0, x) = f(x)

Lhu = f for x ∈ G; u(y) = g(y) for y ∈ ∂G

ā has a simple variational representation.

〈ξ, āξ〉 = inf
w

∫

T d

〈(ξ −∇w), a(x)(ξ −∇w)〉dx

The inf is taken over periodic functions w

In d = 1, ā = [
∫ 1

0
1

a(x)dx]
−1
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3. Random Medium. (Stationary and ergodic)
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3. Random Medium. (Stationary and ergodic)

(Ω,F , P ), {Tx};x ∈ Rd

a(x, ω) = a(Txω) is a random positive definite

matrix valued function on Rd.

Lh,ω = ∇ · a(Tx

h
ω)∇

〈ξ, āξ〉 = inf
w∗

EP [〈(w∗ − ξ), a(ω)(w∗ − ξ)〉]
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3. Random Medium. (Stationary and ergodic)

(Ω,F , P ), {Tx};x ∈ Rd

a(x, ω) = a(Txω) is a random positive definite

matrix valued function on Rd.

Lh,ω = ∇ · a(Tx

h
ω)∇

〈ξ, āξ〉 = inf
w∗

EP [〈(w∗ − ξ), a(ω)(w∗ − ξ)〉]

∫

w∗dP = 0, Diw
∗
j = Djw

∗
i
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4. Balanced Case. What if it is periodic but

Lh =
∑

i,j

ai,j(
x

h
)DiDj
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∫

φdx = 1, φ > 0. Periodic

L∗φ =
∑

i,j

DiDj[ai,j(x)φ(x)] = 0

ā =
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4. Balanced Case. What if it is periodic but

Lh =
∑

i,j

ai,j(
x

h
)DiDj

∫

φdx = 1, φ > 0. Periodic

L∗φ =
∑

i,j

DiDj[ai,j(x)φ(x)] = 0

ā =

∫

T d

a(x)φ(x)dx

In d = 1 the same answer
∫

[ 1
a(x)dx]

−1
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Random case.

Lh,ω =
∑

i,j

ai,j(Tx

h
ω)DiDj

and

ā = E[a(ω)φ(ω)]
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Random case.

Lh,ω =
∑

i,j

ai,j(Tx

h
ω)DiDj

and

ā = E[a(ω)φ(ω)]

φ(ω) is a positive L1 function on (Ω,F , P )

It is the unique weak sense solution of

L∗φ =
∑

i,j

DiDj[ai,j(ω)φ(ω)] = 0

Di is well defined on L2(P )
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6. Nonlinear versions.

Hamilton-Jacobi-Bellman equations. H(x, p).
Periodic (or Random)

ut +
1

2
∆u+H(x,∇u) = 0; u(T, x) = f(

x

T
)

Rescale (t, x) → ( t
T
, x
T
), ǫ = T−1.

ut +
ǫ

2
∆u+H(

x

ǫ
,∇u) = 0; u(1, x) = f(x)
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6. Nonlinear versions.

Hamilton-Jacobi-Bellman equations. H(x, p).
Periodic (or Random)

ut +
1

2
∆u+H(x,∇u) = 0; u(T, x) = f(

x

T
)

Rescale (t, x) → ( t
T
, x
T
), ǫ = T−1.

ut +
ǫ

2
∆u+H(

x

ǫ
,∇u) = 0; u(1, x) = f(x)

ut + H̄(∇u) = 0; u(1, x) = f(x)
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How is H̄(p) related to H(x, p)?

L(x, q) is the Legendre transform.

Consider Ab =
1
2∆+ < b(x),∇ > on the torus.

A∗
bφb = 0
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How is H̄(p) related to H(x, p)?

L(x, q) is the Legendre transform.

Consider Ab =
1
2∆+ < b(x),∇ > on the torus.

A∗
bφb = 0

H̄(p) =

sup
b(·)

[< p,

∫

b(x)φb(x) > −

∫

L(x, b(x))φb(x)]
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In the random case φb does not always exist.
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In the random case φb does not always exist.

Limit the variational formula to b such that φb exists.

Goes under the general name of "homogenization"

J.L.Lions, P.L.Lions, A.Bensoussan,
G.C.Papanicolaou, F.Rezakhanlou, E.Kosygina, P.E.
Suganidis & V.
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7. Interacting particle systems.

On Zd or Rd we have particles.

They interact with each other and move. From a
distance (rescaled) it looks a cloud of particles
moving.

The density at time t is a some ρ(t, x).

How does it evolve?
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Simple exclusion process.

Lf =
∑

x,y

η(x)(1− η(y))p(y − x)[f(ηx,y)− f(η)]

Invariant distributions are Bernoulli.

Rescale x → Nx, t → N2t.

Start far away from equilibrium.

How does the density evolve to equilibrium?
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Look at

FJ(η) =
1

Nd

∑

J(
x

N
)η(x)
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Look at

FJ(η) =
1

Nd

∑

J(
x

N
)η(x)

Compute NkLFJ

k = 1 if
∑

z zp(z) = m 6= 0

k = 2 if
∑

z zp(z) = 0

If p(z) = p(−z) it is a lot easier.
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N2−d
∑

η(x)(1− η(y))p(y − x)[f(ηx,y)− f(η)]

=
N2−d

2

∑

x,y

[η(x)− η(y)]p(y − x)J [(
y

N
)− J(

x

N
)]

≃
1

2Nd

∑

x

Ci,j(∂i∂jf)(
x

N
)
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N2−d
∑

η(x)(1− η(y))p(y − x)[f(ηx,y)− f(η)]

=
N2−d

2

∑

x,y

[η(x)− η(y)]p(y − x)J [(
y

N
)− J(

x

N
)]

≃
1

2Nd

∑

x

Ci,j(∂i∂jf)(
x

N
)

where Ci,j =
∑

z zizjp(z)
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The evolution of density is given by

ρt =
1

2
∇ · C∇ρ
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The evolution of density is given by

ρt =
1

2
∇ · C∇ρ

Interaction does not seem to play a role.

But if p(z) is replaced by p(z) + q(z)
N

with
∑

z zq(z) = m

ρt =
1

2
∇ · C∇ρ−∇ ·mρ(1− ρ)
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The evolution of density is given by

ρt =
1

2
∇ · C∇ρ

Interaction does not seem to play a role.

But if p(z) is replaced by p(z) + q(z)
N

with
∑

z zq(z) = m

ρt =
1

2
∇ · C∇ρ−∇ ·mρ(1− ρ)

The average of η(x)(1− η(y)) is replaced by its

local expectation ρ(1− ρ).
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If
∑

z zp(z) = m 6= 0 then with x → Nx and

t → Nt,
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If
∑

z zp(z) = m 6= 0 then with x → Nx and

t → Nt,

ρt +∇ ·mρ(1− ρ) = 0

If p(z) is not symmetric but
∑

z p(z) = 0,

t → N2t, C now depends on ρ

ρt =
1

2
∇ · C(ρ)∇ρ

C is not easily computable.
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Generator

LN = N2
∑

x,y

p(y−x)η(x)(1−η(y))[F (ηx,y)−F (η)]
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Generator

LN = N2
∑

x,y

p(y−x)η(x)(1−η(y))[F (ηx,y)−F (η)]

FJ(η) =< J, ρ >=
1

Nd

∑

x

J(
x

N
)η(x)
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LNFJ = N2−d
∑

x,y

p(y − x)η(x)(1− η(y))

× [J(
y

N
)− J(

x

N
)]
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LNFJ = N2−d
∑

x,y

p(y − x)η(x)(1− η(y))

× [J(
y

N
)− J(

x

N
)]

≃ N1−d
∑

x

∇J(
x

N
) ·W (x, η)
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if p(·) is symmetric

Wi(x, η) =
1

2

∑

j

Ci,j[η(x+ ej)− η(x)]

Can do summation by parts.
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if p(·) is symmetric

Wi(x, η) =
1

2

∑

j

Ci,j[η(x+ ej)− η(x)]

Can do summation by parts.

Otherwise use E[W ] = 0 in every equilibrium.

Wi(x, η) ≃
1

2

∑

j

Ci,j[η(x+ ej)− η(x)] + ??
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if p(·) is symmetric

Wi(x, η) =
1

2

∑

j

Ci,j[η(x+ ej)− η(x)]

Can do summation by parts.

Otherwise use E[W ] = 0 in every equilibrium.

Wi(x, η) ≃
1

2

∑

j

Ci,j[η(x+ ej)− η(x)] + ??

The ?? can be ignored
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E[Wi] = 0 in all equilibria form a Hilbert space.
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E[Wi] = 0 in all equilibria form a Hilbert space.

There is subspace that are negligible. .

Codimension d in the Hilbert space.

Density gradients η(x+ ej)− η(x) are
complementary.

Done in each equilibrium Pρ with Ci,j(ρ)

Large Deviation theory.
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8. Back to the symmetric case. Tagged Particles.
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8. Back to the symmetric case. Tagged Particles.

What about the motion of a tagged particle in
equilibrium at density ρ?

Diffuses. λ−1x(λ2t) → B(t).

Covariance is S(ρ)
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What about in non-equilibrium?
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What about in non-equilibrium?

Lt =
1

2
∇ · S(ρ(t, x))∇ +

(S(ρ(t, x)) − C)∇ρ

2ρ
∇
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1
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∇ · S(ρ(t, x))∇ +
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∇

L∗
tρ = 1

2∇C∇ρ

9. Trajectories

1
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δxi(N
2
·)

N

→ P
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What about in non-equilibrium?

Lt =
1

2
∇ · S(ρ(t, x))∇ +

(S(ρ(t, x)) − C)∇ρ

2ρ
∇

L∗
tρ = 1

2∇C∇ρ

9. Trajectories

1

Nd

∑

i

δxi(N
2
·)

N

→ P

Markov with generator Lt.
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10. Classical Mechanics-Fluid flow.

Scaling Limits – p. 26/29



10. Classical Mechanics-Fluid flow.

ODE’s

q̇i = pi, ṗi = −
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∑

j

(∇V )(xi − xj)

Conserved quantities. ρ, u, e.

Scaling Limits – p. 26/29



10. Classical Mechanics-Fluid flow.

ODE’s

q̇i = pi, ṗi = −
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10. Classical Mechanics-Fluid flow.

ODE’s

q̇i = pi, ṗi = −
∑

j

(∇V )(xi − xj)

Conserved quantities. ρ, u, e.

First order hyperbolic PDE for them.

Connect the ODE’s to PDE
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Gibbs States. Constant ρ, u, e.
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Gibbs States. Constant ρ, u, e.

Local Gibbs state, Slowly varying ρ, u, e

Liouville flow

Euler Flow.

[ρ0, u0, T0] −−→ Local Gibbs




y
Euler





y
Liouville

[ρt, ut, Tt] −−→ do not match
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Gibbs States. Constant ρ, u, e.

Local Gibbs state, Slowly varying ρ, u, e

Liouville flow

Euler Flow.

[ρ0, u0, T0] −−→ Local Gibbs




y
Euler





y
Liouville

[ρt, ut, Tt] −−→ do not match

Diagram does not commute!

It almost does after some noisy modification.
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Work done over 25 years. Presutti, De Masi,
H.T.Yau, Olla, Rezakhanlou, Quastel, Kosygina, V
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Thank You
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