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Entropy comes up in many different contexts.
in Physics, introduced by Rudolf Clausius in 1865

In connection with heat transfer, relation between
heat and work. Classical thermodynamics.

Bulk Quantity

Boltzmann around 1877 defined entropy as clog |€2],
() is the set of micro states that correspond to a given
macro state. |{2| is its size.
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Shannon’s Entropy. 1948. Mathematical theory of
communication. Modern information theory.
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Shannon’s Entropy. 1948. Mathematical theory of
communication. Modern information theory.

Given p = (p1,...,Pk),

H(p) = — ) pilogp,
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Shannon’s Entropy. 1948. Mathematical theory of
communication. Modern information theory.

Given p = (p1,...,Pk),

H(p) = — ) pilogp,

Conditional Probability P| X = ¢|X] = p;(w),
Elpi(w)] = pi
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Conditional Entropy

sz ) log pi(w
E[H sz ) log pi(w)]
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mcavity

H=- szlogpzzE sz ) log pi(w)]



Concavity

H = sz logp; > E|— sz ) log pi(w)]

X 1s a stationary stochastic process.
pi(w) =P X1 =1iXp,... X _,,...]

Zp@ ) log pi(w)]
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Concavity

H = sz logp; > E|— sz ) log pi(w)]

X 1s a stationary stochastic process.
pi(w) =P X1 =1iXp,... X _,,...]

Zp@ ) log pi(w)]

Conditioning 1s with respect to past history.
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ok at p(x1,...,T,)






ok at p(x1,...,T,)
(P) =
Zwl,...,xn p(xlv O 7xn) logp(xl, SR 7xn)



ok at p(x1,...,T,)

o

+ac1,.<..,:;}p(x17"'7xn) lng(Qfl,. L
m < Hyp+ Hp, Hy1s T -
+1 _H'n, IS\L |



» Look at p(x1,...,x,)
m H,(P)=
> iz D@1, ) log (T, .., 2)
«H, .. <H, +H,, H,is?
mH, 11— H,1s|

» H(P) =lim £z = lim[H, ., — H,)]

n_
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Shift 7" in a space of sequences. P any stationary
process.
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process.

[somorphism between (X, >, T, P) and
(X', X T, P

S: X > X:ST=TSPS =P

Spectral Invariant. (U f)(z) = f(Ux) Unitary map
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Dynamical system. (X,», T, P). T : X — X
preserves P.

Shift 7" in a space of sequences. P any stationary
process.

[somorphism between (X, >, T, P) and
(X', X T, P

S: X > X:ST=TSPS =P

Spectral Invariant. (U f)(z) = f(Ux) Unitary map
in Ly(X,, P)

VU =U'V
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Entropy of a dynamical system.
(2,5, P, T)

Each function f taking a finite set of values
generates a stochastic process £, the distribution of

U (T") )
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Entropy of a dynamical system.
(2,5, P, T)

Each function f taking a finite set of values
generates a stochastic process £, the distribution of

U (T") )
h(€2, 3, P,T) = sup; h(Pf)
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Entropy of a dynamical system.
(2,5, P, T)

Each function f taking a finite set of values
generates a stochastic process £, the distribution of

U (T") )
h(€2, 3, P,T) = sup; h(Pf)

Invariant. Not spectral. H(T* P) = 2H(T, P).
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Entropy of a dynamical system.
(2,5, P, T)

Each function f taking a finite set of values
generates a stochastic process £, the distribution of

(")}

h(Q2,%, PT) = Sup h(Pr)

Invariant. Not spectral. H(T* P) = 2H(T, P).
Computable. P = IIp, H(P) = h(p).
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ymorphism Theorem of Ornstein
h(p) = h(q)



Isomorphism Theorem of Ornstein

If h(p) = h(q)

The dynamical systems with product measures P, (),
i.e (F*°, P) and (G*, () are isomorphic.
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Code 1n such a way that the best compression 1s
achieved.
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Shannon’s entropy and coding

Code 1n such a way that the best compression 1s
achieved.

Incoming data stream has stationary statistics P.

Coding to be done into words in an alphabet of size
r.

H(P).

logr °

The compression factor 1s ¢ =
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The number of n tuples is k".

Shannon-Breiman-McMillan theorem: If P 1s
stationary and ergodic, P(FE, ) — 1 where

1
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The number of n tuples is k".

Shannon-Breiman-McMillan theorem: If P 1s
stationary and ergodic, P(FE, ) — 1 where

1

Almost the entire probability under P 1s carried by

nearly e"?(P) n tuples of more or less equal
probability.
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The number of n tuples is k".

Shannon-Breiman-McMillan theorem: If P 1s
stationary and ergodic, P(FE, ) — 1 where

1

Almost the entire probability under P 1s carried by

nearly e"?(P) n tuples of more or less equal
probability.
rm:@nH(P) C:m:H(P)

' ) logr
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k" sequences of length n from an alphabet of size k.
How many look like P?
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k" sequences of length n from an alphabet of size k.
How many look like P?

exp|n(H(P)) + o(n)]
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k" sequences of length n from an alphabet of size k.
How many look like P?
exp[n(H(P)) + o(n)]

H(P) is maximized when P = F,, the uniform
distribution on /™
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k" sequences of length n from an alphabet of size k.
How many look like P?
exp[n(H(P)) + o(n)]

H(P) is maximized when P = F,, the uniform
distribution on /™

H(Po) :lng
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Kullback-Leibler information, Relative Entropy

(1951)
Z q; log e
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Kullback-Leibler information, Relative Entropy

(1951)
Z q; log e

If p 1s the uniform distribution with mass % at every
point then

h(q:p) =logk — h(q)
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Kullback-Leibler information, Relative Entropy

(1951)
Z q; log e

If p 1s the uniform distribution with mass % at every
point then

h(q:p) =logk — h(q)

Two probability densities

H(g; f) = /g(x) log ?Ei;dw
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Two probability measures

du  d
H(u,)\):/bg iy = / ™ iog “dA
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Two probability measures

du  d
H(u,)\):/bg iy = / ™ iog “dA

Two stationary processes

H(Q,P) = EX[H(Q[%; P|Y)

Entroov and Laree Deviations — n. 14/32



Two probability measures

du  d
H(u,)\):/bg iy = / ™ iog “dA

Two stationary processes

H(Q, P) = E°[H(Q[%; P|2)]
Has issues! OK if P|Y is globally defined.
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(3 are probability measures on X
= lla



(3 are probability measures on X
= lla



a, B are probability measures on X
P = lla

Sanov’s Theorem.

Plr(dz) ~ f] = exp[-nH (8; ) + o(n)]
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rge Deviations
r closed sets C

1
lim sup — log P,|C] < — inf I(x)

n— 00 mn $EC



Large Deviations
For closed sets C

1
lim sup — log P,|C] <
n

n—0o0
For open sets G

|

liminf — log P,[C] >

n—oo N

— inf I(x)

xzeC

— inf I(x)

relG
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Large Deviations
For closed sets C

1

I; log P, f I
im sup —log P|C] < — inf I(z)
For open sets G
1
liminf —log P,|C| > — inf I(x)
n—oo M relG

I 1s lower semi1 continuous and has compact level
sets.
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Sanov’s theorem 1s an example.

P, on M (X) with weak topology is the distribution
of 7, (dx) under Ilc.
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Sanov’s theorem 1s an example.

P, on M (X) with weak topology is the distribution
of 7, (dx) under Ilc.

[(B) = h(B : ).
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P 1s a stationary process, We have a string of n
observations.

Ergodic theorem says most sequences resemble P.

What is the probability that they resemble ()?
exp|—nH(Q; P)]
If P = Fythen H(Q; P) =logk — H(Q).
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P 1s a stationary process, We have a string of n
observations.

Ergodic theorem says most sequences resemble P.

What is the probability that they resemble ()?
exp|—nH (Q; P)|

If P = Fythen H(Q; P) =logk — H(Q).
OK for nice P.
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nctional Analysis
>0 [ fdh=1



nctional Analysis
>0 [ fdh=1
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There 1s an analog of Holder’s inequality 1n the limit
asp — 1.

The duality
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There 1s an analog of Holder’s inequality 1n the limit
asp — 1.

The duality
x,y € R

< 2Pyl
LY = T
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There 1s an analog of Holder’s inequality 1n the limit
asp — 1.

The duality
x,y € R

< 2Pyl
LY = T

= sup, oy — U0 = sup, [ay — 2

Becomes, forx > 0.y € R
rlogx — x = sup,[ry — €Y

e¥ = sup,.olry — (rlogz — )]
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Holder inequality becomes generalized Jensen’s
inequality.

/gd,u:/fgd)\Slog/egd)\—l—H(,u,)\)

Entroov and Laree Deviations — n. 21/32



Holder inequality becomes generalized Jensen’s
inequality.
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g = cxa(x). Optimize over ¢ > 0. ¢ = log ﬁ
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Holder inequality becomes generalized Jensen’s
inequality.

/gd,u:/fgd)\Slog/egd)\—l—H(,u,)\)

g = cxa(x). Optimize over ¢ > 0. ¢ = log ﬁ

ed = X Ac | )\(114)XA9 fegd)\ < 2
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Holder inequality becomes generalized Jensen’s
inequality.

/gd,u:/fgd)\Slog/egd)\—l—H(,u,)\)

g = cxa(x). Optimize over ¢ > 0. ¢ = log ﬁ

ed = X Ac | )\(114)XA9 fegd)\ < 2

H(p, \) + log 2

1

plA) < —
08 X(A4)

oe Deviations — n. 21/32



Entropy grows linearly but the Lp norms grow
exponentially fast.
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Entropy grows linearly but the Lp norms grow
exponentially fast.

Usetul inequality for interacting particle systems
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Statistical Mechanics. Probability distributions are
often defined through an energy functional.
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Statistical Mechanics. Probability distributions are
often defined through an energy functional.

(21, 2o, . .., xp)

n—k+1
— [C( eXp Z F IZ, Litly- .- 7xi—|—k—1)]
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n—k—+1

[_ Z F(xu Lit1y .- - 7aji-|—k—1)]
1=1

00000



n—k-+1

Cn = E GXp E F xl) Litly - - 7xi—l—k—1>]

L1geeeqlin

m exp|nH (P)], P typical sequences.
w exp[—n [ FdP]
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n—k-+1

g = g exp|— g F(xi, Tiv1, . -, Tivk_1)]

L1geeeqlin

exp|nH (P)]|, P typical sequences.
exp[—n [ FdP]

The sum therefore is e/ FdP—H(P))
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ien by Laplace asymptotics

log ¢,

lim = sup|— / FdP+ H(P)]

n—0o0 mn P




Then by Laplace asymptotics

log ¢,

lim = sup|— / FdP+ H(P)

n— o0 4 P

It the sup 1s attained at a unique P then

O

P~ exp|— Z 88, Byt o - o 5 Bigp—t )|

1=—00
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Then by Laplace asymptotics

log ¢,

lim = sup|— / FdP+ H(P)

n— o0 4 P

It the sup 1s attained at a unique P then

P ~ exp Z F xz; Lit1y. .. 7xi-|—k—1)]

1=—00

The averages - Z? 1k+ G(xi, Tix1, .-, Tivk_1)
converge 1n probablhty under p,, to
]

eviations — n. 25/32
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Log Sobolev inequality.

T is a Markov semigroup, on (X, X))
T;f >0if f >0and 7;1 = 1.
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Log Sobolev inequality.

T is a Markov semigroup, on (X, X))
T;f >0if f >0and 7;1 = 1.

Symmetric with respect to u
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Log Sobolev inequality.

T is a Markov semigroup, on (X, X))
T;f >0if f >0and 7;1 = 1.

Symmetric with respect to u
f>0,[ fdu=1

[ Flog fan < eD(V/F)
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Log Sobolev inequality.

T is a Markov semigroup, on (X, X))
T;f >0if f >0and 7;1 = 1.

Symmetric with respect to u
f>0,[ fdu=1

[ Flog fan < eD(V/F)

d 1
a/ftlogftdu < —§D(\/?) < —c’/ftlogftdu
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Exponential decay, spectral gap etc.

Infinitesimal Version.

U (2, 0) )
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Exponential decay, spectral gap etc.

Infinitesimal Version.

U (2, 0) )

f(z,0)
f(xa (90) dlu

H (6. 60) — / 7(.6) log
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Exponential decay, spectral gap etc.
Infinitesimal Version.

U (2, 0) )

f(z,0)
f(xa (90) dlu

H (6. 60) — / 7(.6) log

H (60, 60y) has a minimum at 6.
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Exponential decay, spectral gap etc.
Infinitesimal Version.

U (2, 0) )

f(z,0)
f(xa (90) dlu

H (6. 60) — / 7(.6) log

H (60, 60y) has a minimum at 6.

d*H
](9(0)) — Wb:eo

onv and Laroe

eviations — n. 27/32
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btimizing Entropy.
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btimizing Entropy.
SS a coin 1 times.
Tel %T"’ heads.



Optimizing Entropy.
Toss a coin n times.
Had %T” heads.

Was it a steady lead or burst of heads?
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Optimizing Entropy.
Toss a coin n times.
Had %T” heads.

Was it a steady lead or burst of heads?
P[;.S(nt) ~ f(t)]
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t) = p(t)
n [ h(p(t))dt

inimize fol h(p(t))dt subject to folp(s)ds — %



= fi(t) = p(t)
w " Jo hp(t))dt
» Minimize fol h(p(t))dt subject to fo s)ds =

m h(p) =log2+plogp+ (1 —p)log(l —p)

Entroov and Laree Deviations — n. 29/32



m fi(t) = p(t)

w " Jo hp(t))dt

» Minimize fol h(p(t))dt subject to fo s)ds =

m h(p) =log2+plogp+ (1 —p)log(l —p)

3s

= Convexity. p(s) = 7.
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>neral Philosophy
A) is to be estimated.
A) is small.



General Philosophy

P(A) is to be estimated.
P(A) is small.

Find ) such that Q(A) ~ 1
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General Philosophy

P(A) is to be estimated.
P(A) is small.

Find ) such that Q(A) ~ 1
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P(A) > Q(A) exp| Q(lA) /Alog Z—id@]

Asymptotically more or less

P(A) > exp[-h(Q : P)]
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P(A) > Q(A) exp| Q(lA) /Alog Z—id@]

Asymptotically more or less
P(A) > exp[—h(Q : P)]

Optimize over ().
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Example. Markov Chain
{p; ;}. Invariant distribution p

What is the probability that the empirical 7, 1s close
to q.
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Example. Markov Chain
{p; ;}. Invariant distribution p

What is the probability that the empirical 7, 1s close
to q.

Find {¢; ;} such that the invariant distribution is q
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Example. Markov Chain
{p; ;}. Invariant distribution p

What is the probability that the empirical 7, 1s close
to q.

Find {¢; ;} such that the invariant distribution is q
h@Q : P) = ZZ] ¢igi,j log g‘j
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Example. Markov Chain
{p; ;}. Invariant distribution p

What is the probability that the empirical 7, 1s close
to q.

Find {¢; ;} such that the invariant distribution is q
h(Q : P) = Zi,j qiq; ; log did

Pi,j

Optimize over {g; ; } with q as invariant distribution.
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Example. Markov Chain
{p; ;}. Invariant distribution p

What is the probability that the empirical 7, 1s close
to q.

Find {¢; ;} such that the invariant distribution is q
h@Q : P) = ZZ] ¢igi,j log g‘j

Optimize over {g; ; } with q as invariant distribution.

Best possible lower bound 1s the upper bound.

Entroov and Laree Deviations — n. 32/32
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indom graphs
s the probability of edge.



Random graphs
p 1s the probability of edge.

Need more triangles ()7, 7 > p®.
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Random graphs
p 1s the probability of edge.

Need more triangles (% )7, 7 > p?.

3
Fix [ f(z,y)f(y,2)f(z,2)dzdydz = T
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Random graphs
p 1s the probability of edge.

Need more triangles ()7, 7 > p®.

Fix [ f(z,y)f(y,2)f(2, v)drdydz = T

Minimize H(f) =

J1f (2. y)log P52 + (1= f (2, y)) log "5 drd
xr,UyY)log | L,Y))log 1—p Lay
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Random graphs
p 1s the probability of edge.

Need more triangles ()7, 7 > p®.

Fix [ f(z,y)f(y,2)f(2, v)drdydz = T

Minimize H(f) =

J1f (2. y)log P52 + (1= f (2, y)) log "5 drd
xr,UyY)log | L,Y))log 1—p Lay

f:’]’g?
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