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Entropy comes up in many different contexts.

in Physics, introduced by Rudolf Clausius in 1865

In connection with heat transfer, relation between
heat and work. Classical thermodynamics.

Bulk Quantity

Boltzmann around 1877 defined entropy as c log |Ω|,
Ω is the set of micro states that correspond to a given

macro state. |Ω| is its size.
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Shannon’s Entropy. !948. Mathematical theory of
communication. Modern information theory.
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Shannon’s Entropy. !948. Mathematical theory of
communication. Modern information theory.

Given p = (p1, . . . , pk),

H(p) = −
∑

i

pi log pi
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Shannon’s Entropy. !948. Mathematical theory of
communication. Modern information theory.

Given p = (p1, . . . , pk),

H(p) = −
∑

i

pi log pi

Conditional Probability P [X = i|Σ] = pi(ω),
E[pi(ω)] = pi
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Conditional Entropy

H(ω) = −
∑

i

pi(ω) log pi(ω)

E[H(ω)] = E[−
∑

i

pi(ω) log pi(ω)]
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Concavity

H = −
∑

i

pi log pi ≥ E[−
∑

i

pi(ω) log pi(ω)]
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Concavity

H = −
∑

i

pi log pi ≥ E[−
∑

i

pi(ω) log pi(ω)]

Xi is a stationary stochastic process.

pi(ω) = P [X1 = i|X0, . . . X−n, . . .].

H[P ] = EP
[

−
∑

i

pi(ω) log pi(ω)
]
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Concavity

H = −
∑

i

pi log pi ≥ E[−
∑

i

pi(ω) log pi(ω)]

Xi is a stationary stochastic process.

pi(ω) = P [X1 = i|X0, . . . X−n, . . .].

H[P ] = EP
[

−
∑

i

pi(ω) log pi(ω)
]

Conditioning is with respect to past history.
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Look at p(x1, . . . , xn)
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Look at p(x1, . . . , xn)

Hn(P ) =
−
∑

x1,...,xn
p(x1, . . . , xn) log p(x1, . . . , xn)
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Look at p(x1, . . . , xn)

Hn(P ) =
−
∑

x1,...,xn
p(x1, . . . , xn) log p(x1, . . . , xn)

Hn+m ≤ Hn +Hm, Hn is ↑.
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Look at p(x1, . . . , xn)

Hn(P ) =
−
∑

x1,...,xn
p(x1, . . . , xn) log p(x1, . . . , xn)

Hn+m ≤ Hn +Hm, Hn is ↑.

Hn+1 −Hn is ↓

H(P ) = lim Hn

n
= lim[Hn+1 −Hn]
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Dynamical system. (X,Σ, T, P ). T : X → X
preserves P .
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S : X → X ′;ST = T ′S, PS−1 = P ′

Spectral Invariant. (Uf)(x) = f(Ux) Unitary map
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Dynamical system. (X,Σ, T, P ). T : X → X
preserves P .

Shift T in a space of sequences. P any stationary
process.

Isomorphism between (X,Σ, T, P ) and

(X ′,Σ′, T ′, P ′)

S : X → X ′;ST = T ′S, PS−1 = P ′

Spectral Invariant. (Uf)(x) = f(Ux) Unitary map

in L2(X,Σ, P )

V U = U ′V

Entropy and Large Deviations – p. 7/32



Entropy of a dynamical system.

(Ω,Σ, P, T )
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Entropy of a dynamical system.

(Ω,Σ, P, T )

Each function f taking a finite set of values
generates a stochastic process Pf , the distribution of

{f(T nx)}
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Entropy of a dynamical system.

(Ω,Σ, P, T )

Each function f taking a finite set of values
generates a stochastic process Pf , the distribution of

{f(T nx)}

h(Ω,Σ, P, T ) = supf h(Pf)

Invariant. Not spectral. H(T 2, P ) = 2H(T, P ).
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Entropy of a dynamical system.

(Ω,Σ, P, T )

Each function f taking a finite set of values
generates a stochastic process Pf , the distribution of

{f(T nx)}

h(Ω,Σ, P, T ) = supf h(Pf)

Invariant. Not spectral. H(T 2, P ) = 2H(T, P ).

Computable. P = Πp, H(P ) = h(p).
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Isomorphism Theorem of Ornstein
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Isomorphism Theorem of Ornstein

If h(p) = h(q)
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Isomorphism Theorem of Ornstein

If h(p) = h(q)

The dynamical systems with product measures P,Q,

i.e (F∞, P ) and (G∞, Q) are isomorphic.
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Shannon’s entropy and coding
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Shannon’s entropy and coding

Code in such a way that the best compression is
achieved.

Incoming data stream has stationary statistics P .

Coding to be done into words in an alphabet of size
r.

The compression factor is c = H(P )
log r ;
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The number of n tuples is kn.
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The number of n tuples is kn.

Shannon-Breiman-McMillan theorem: If P is
stationary and ergodic, P (En) → 1 where

En = {|
1

n
log p(x1, . . . , xn)−H(P )| ≤ ǫ}
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The number of n tuples is kn.

Shannon-Breiman-McMillan theorem: If P is
stationary and ergodic, P (En) → 1 where

En = {|
1

n
log p(x1, . . . , xn)−H(P )| ≤ ǫ}

Almost the entire probability under P is carried by

nearly enH(P) n tuples of more or less equal
probability.
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The number of n tuples is kn.

Shannon-Breiman-McMillan theorem: If P is
stationary and ergodic, P (En) → 1 where

En = {|
1

n
log p(x1, . . . , xn)−H(P )| ≤ ǫ}

Almost the entire probability under P is carried by

nearly enH(P) n tuples of more or less equal
probability.

rm = enH(P ). c = m
n
= H(P)

log r
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kn sequences of length n from an alphabet of size k.
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kn sequences of length n from an alphabet of size k.

How many look like P ?

exp[n(H(P )) + o(n)]
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kn sequences of length n from an alphabet of size k.

How many look like P ?

exp[n(H(P )) + o(n)]

H(P ) is maximized when P = P0, the uniform
distribution on F n
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kn sequences of length n from an alphabet of size k.

How many look like P ?

exp[n(H(P )) + o(n)]

H(P ) is maximized when P = P0, the uniform
distribution on F n

H(P0) = log k
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Kullback-Leibler information, Relative Entropy
(1951)

H(q;p) =
∑

i

qi log
qi

pi
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Kullback-Leibler information, Relative Entropy
(1951)

H(q;p) =
∑

i

qi log
qi

pi

If p is the uniform distribution with mass 1
k

at every

point then

h(q : p) = log k − h(q)
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Kullback-Leibler information, Relative Entropy
(1951)

H(q;p) =
∑

i

qi log
qi

pi

If p is the uniform distribution with mass 1
k

at every

point then

h(q : p) = log k − h(q)

Two probability densities

H(g; f) =

∫

g(x) log
g(x)

f(x)
dx
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Two probability measures

H(µ, λ) =

∫

log
dµ

dλ
dµ =

∫

dµ

dλ
log

dµ

dλ
dλ
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Two probability measures

H(µ, λ) =

∫

log
dµ

dλ
dµ =

∫

dµ

dλ
log

dµ

dλ
dλ

Two stationary processes

H(Q,P ) = EQ[H(Q|Σ;P |Σ)]
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Two probability measures

H(µ, λ) =

∫

log
dµ

dλ
dµ =

∫

dµ

dλ
log

dµ

dλ
dλ

Two stationary processes

H(Q,P ) = EQ[H(Q|Σ;P |Σ)]

Has issues! OK if P |Σ is globally defined.
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α, β are probability measures on X
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α, β are probability measures on X

P = Πα

Entropy and Large Deviations – p. 15/32



α, β are probability measures on X

P = Πα

rn(dx) =
1

n

n
∑

i=1

δxi
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α, β are probability measures on X

P = Πα

rn(dx) =
1

n

n
∑

i=1

δxi

Sanov’s Theorem.

P [rn(dx) ≃ β] = exp[−nH(β;α) + o(n)]
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Large Deviations
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Large Deviations

For closed sets C

lim sup
n→∞

1

n
logPn[C] ≤ − inf

x∈C
I(x)
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Large Deviations

For closed sets C

lim sup
n→∞

1

n
logPn[C] ≤ − inf

x∈C
I(x)

For open sets G

lim inf
n→∞

1

n
logPn[C] ≥ − inf

x∈G
I(x)

Entropy and Large Deviations – p. 16/32



Large Deviations

For closed sets C

lim sup
n→∞

1

n
logPn[C] ≤ − inf

x∈C
I(x)

For open sets G

lim inf
n→∞

1

n
logPn[C] ≥ − inf

x∈G
I(x)

I is lower semi continuous and has compact level
sets.
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Sanov’s theorem is an example.
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Sanov’s theorem is an example.

Pn on M(X) with weak topology is the distribution

of rn(dx) under Πα.
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Sanov’s theorem is an example.

Pn on M(X) with weak topology is the distribution

of rn(dx) under Πα.

I(β) = h(β : α).
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P is a stationary process, We have a string of n
observations.
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P is a stationary process, We have a string of n
observations.

Ergodic theorem says most sequences resemble P .

What is the probability that they resemble Q?

exp[−nH(Q;P )]
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P is a stationary process, We have a string of n
observations.

Ergodic theorem says most sequences resemble P .

What is the probability that they resemble Q?

exp[−nH(Q;P )]

If P = P0 then H(Q;P ) = log k −H(Q).
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P is a stationary process, We have a string of n
observations.

Ergodic theorem says most sequences resemble P .

What is the probability that they resemble Q?

exp[−nH(Q;P )]

If P = P0 then H(Q;P ) = log k −H(Q).

OK for nice P .
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Functional Analysis
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Functional Analysis

f ≥ 0
∫

fdλ = 1
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Functional Analysis

f ≥ 0
∫

fdλ = 1

d

dp

∣

∣

∣

∣

p=1

[
∫

f pdλ

]

=

∫

f log fdλ
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There is an analog of Holder’s inequality in the limit
as p → 1.
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There is an analog of Holder’s inequality in the limit
as p → 1.

The duality
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There is an analog of Holder’s inequality in the limit
as p → 1.

The duality

x, y ∈ R.

xy ≤ |x|p

p
+ |y|q

q
,

|x|p

p
= supy[xy −

|y|q

q
], |y|

q

q
= supx[xy −

|x|p

p
]
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There is an analog of Holder’s inequality in the limit
as p → 1.

The duality

x, y ∈ R.

xy ≤ |x|p

p
+ |y|q

q
,

|x|p

p
= supy[xy −

|y|q

q
], |y|

q

q
= supx[xy −

|x|p

p
]

Becomes, for x > 0, y ∈ R
x log x− x = supy[xy − ey]

ey = supx>0[xy − (x log x− x)]
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Hölder inequality becomes generalized Jensen’s
inequality.

∫

gdµ =

∫

fgdλ ≤ log

∫

egdλ+H(µ, λ)
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Hölder inequality becomes generalized Jensen’s
inequality.

∫

gdµ =

∫

fgdλ ≤ log

∫

egdλ+H(µ, λ)

g = cχA(x). Optimize over c > 0. c = log 1
λ(A)
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Hölder inequality becomes generalized Jensen’s
inequality.

∫

gdµ =

∫

fgdλ ≤ log

∫

egdλ+H(µ, λ)

g = cχA(x). Optimize over c > 0. c = log 1
λ(A)

eg = χAc + 1
λ(A)χA;

∫

egdλ ≤ 2
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Hölder inequality becomes generalized Jensen’s
inequality.

∫

gdµ =

∫

fgdλ ≤ log

∫

egdλ+H(µ, λ)

g = cχA(x). Optimize over c > 0. c = log 1
λ(A)

eg = χAc + 1
λ(A)χA;

∫

egdλ ≤ 2

µ(A) ≤
H(µ, λ) + log 2

log 1
λ(A)
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Entropy grows linearly but the Lp norms grow
exponentially fast.
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Entropy grows linearly but the Lp norms grow
exponentially fast.

Useful inequality for interacting particle systems
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Statistical Mechanics. Probability distributions are
often defined through an energy functional.
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Statistical Mechanics. Probability distributions are
often defined through an energy functional.

pn(x1, x2, . . . , xn)

= [c(n)]−1 exp[−
n−k+1
∑

i=1

F (xi, xi+1, . . . , xi+k−1)]
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cn =
∑

x1,...,xn

exp[−
n−k+1
∑

i=1

F (xi, xi+1, . . . , xi+k−1)]
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cn =
∑

x1,...,xn

exp[−
n−k+1
∑

i=1

F (xi, xi+1, . . . , xi+k−1)]

exp[nH(P )], P typical sequences.
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cn =
∑

x1,...,xn

exp[−
n−k+1
∑

i=1

F (xi, xi+1, . . . , xi+k−1)]

exp[nH(P )], P typical sequences.

exp[−n
∫

FdP ]
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cn =
∑

x1,...,xn

exp[−
n−k+1
∑

i=1

F (xi, xi+1, . . . , xi+k−1)]

exp[nH(P )], P typical sequences.

exp[−n
∫

FdP ]

The sum therefore is e−n(
∫

FdP−H(P ))
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Then by Laplace asymptotics

lim
n→∞

log cn
n

= sup
P

[−

∫

F dP +H(P )]
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Then by Laplace asymptotics

lim
n→∞

log cn
n

= sup
P

[−

∫

F dP +H(P )]

If the sup is attained at a unique P then

P ≃ c−1 exp[−
∞
∑

i=−∞

F (xi, xi+1, . . . , xi+k−1)]
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Then by Laplace asymptotics

lim
n→∞

log cn
n

= sup
P

[−

∫

F dP +H(P )]

If the sup is attained at a unique P then

P ≃ c−1 exp[−
∞
∑

i=−∞

F (xi, xi+1, . . . , xi+k−1)]

The averages 1
n

∑n−k+1
i=1 G(xi, xi+1, . . . , xi+k−1)

converge in probability under pn to

EP [G(x1, . . . , xk)].
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Log Sobolev inequality.
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Log Sobolev inequality.

Tt is a Markov semigroup, on (X,Σ)
Ttf ≥ 0 if f ≥ 0 and Tt1 = 1.
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Log Sobolev inequality.

Tt is a Markov semigroup, on (X,Σ)
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Symmetric with respect to µ
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Log Sobolev inequality.

Tt is a Markov semigroup, on (X,Σ)
Ttf ≥ 0 if f ≥ 0 and Tt1 = 1.

Symmetric with respect to µ

f ≥ 0,
∫

fdµ = 1

∫

f log fdµ ≤ cD(
√

f)
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Log Sobolev inequality.

Tt is a Markov semigroup, on (X,Σ)
Ttf ≥ 0 if f ≥ 0 and Tt1 = 1.

Symmetric with respect to µ

f ≥ 0,
∫

fdµ = 1

∫

f log fdµ ≤ cD(
√

f)

d

dt

∫

ft log ftdµ ≤ −
1

2
D(

√

f) ≤ −c′
∫

ft log ftdµ
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Exponential decay, spectral gap etc.
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Exponential decay, spectral gap etc.

Infinitesimal Version.

{f(x, θ)}
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Exponential decay, spectral gap etc.

Infinitesimal Version.

{f(x, θ)}

H(θ, θ0) =

∫

f(x, θ) log
f(x, θ)

f(x, θ0)
dµ
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Exponential decay, spectral gap etc.

Infinitesimal Version.

{f(x, θ)}

H(θ, θ0) =

∫

f(x, θ) log
f(x, θ)

f(x, θ0)
dµ

H(θ, θ0) has a minimum at θ0.
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Exponential decay, spectral gap etc.

Infinitesimal Version.

{f(x, θ)}

H(θ, θ0) =

∫

f(x, θ) log
f(x, θ)

f(x, θ0)
dµ

H(θ, θ0) has a minimum at θ0.

I(θ(0)) =
d2H

dθ2
|
θ=θ0
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Optimizing Entropy.
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Optimizing Entropy.

Toss a coin n times.
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Optimizing Entropy.

Toss a coin n times.

Had 3n
4 heads.
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Optimizing Entropy.

Toss a coin n times.

Had 3n
4 heads.

Was it a steady lead or burst of heads?
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Optimizing Entropy.

Toss a coin n times.

Had 3n
4 heads.

Was it a steady lead or burst of heads?

P [ 1
n
S(nt) ≃ f(t)]
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f ′(t) = p(t)
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f ′(t) = p(t)

e−n
∫

1

0
h(p(t))dt
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f ′(t) = p(t)

e−n
∫

1

0
h(p(t))dt

Minimize
∫ 1

0 h(p(t))dt subject to
∫ 1

0 p(s)ds = 3
4
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f ′(t) = p(t)

e−n
∫

1

0
h(p(t))dt

Minimize
∫ 1

0 h(p(t))dt subject to
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f ′(t) = p(t)

e−n
∫

1

0
h(p(t))dt

Minimize
∫ 1

0 h(p(t))dt subject to
∫ 1

0 p(s)ds = 3
4

h(p) = log 2 + p log p+ (1− p) log(1− p)

Convexity. p(s) = 3s
4 .
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P (A) is to be estimated.
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General Philosophy

P (A) is to be estimated.

P (A) is small.

Find Q such that Q(A) ≃ 1
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General Philosophy

P (A) is to be estimated.

P (A) is small.

Find Q such that Q(A) ≃ 1

P (A) = Q(A)
1

Q(A)

∫

A

e− log dQ
dP dQ
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P (A) ≥ Q(A) exp[−
1

Q(A)

∫

A

log
dQ

dP
dQ]
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P (A) ≥ Q(A) exp[−
1

Q(A)

∫

A

log
dQ

dP
dQ]

Asymptotically more or less

P (A) ≥ exp[−h(Q : P )]
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P (A) ≥ Q(A) exp[−
1

Q(A)

∫

A

log
dQ

dP
dQ]

Asymptotically more or less

P (A) ≥ exp[−h(Q : P )]

Optimize over Q.
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What is the probability that the empirical rn is close
to q.
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Example. Markov Chain

{pi,j}. Invariant distribution p

What is the probability that the empirical rn is close
to q.

Find {qi,j} such that the invariant distribution is q

h(Q : P ) =
∑

i,j qiqi,j log
qi,j
pi,j
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Example. Markov Chain

{pi,j}. Invariant distribution p

What is the probability that the empirical rn is close
to q.

Find {qi,j} such that the invariant distribution is q

h(Q : P ) =
∑

i,j qiqi,j log
qi,j
pi,j

Optimize over {qi,j} with q as invariant distribution.
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Example. Markov Chain

{pi,j}. Invariant distribution p

What is the probability that the empirical rn is close
to q.

Find {qi,j} such that the invariant distribution is q

h(Q : P ) =
∑

i,j qiqi,j log
qi,j
pi,j

Optimize over {qi,j} with q as invariant distribution.

Best possible lower bound is the upper bound.
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p is the probability of edge.
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Random graphs

p is the probability of edge.

Need more triangles
(

N
3

)

τ , τ > p3.
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Random graphs

p is the probability of edge.

Need more triangles
(

N
3

)

τ , τ > p3.

Fix
∫

f(x, y)f(y, z)f(z, x)dxdydz = τ
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Random graphs

p is the probability of edge.

Need more triangles
(

N
3

)

τ , τ > p3.

Fix
∫

f(x, y)f(y, z)f(z, x)dxdydz = τ

Minimize H(f) =
∫

[f(x, y) log f(x,y)
p

+(1−f(x, y)) log (1−f(x,y))
1−p

]dxdy
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Random graphs

p is the probability of edge.

Need more triangles
(

N
3

)

τ , τ > p3.

Fix
∫

f(x, y)f(y, z)f(z, x)dxdydz = τ

Minimize H(f) =
∫

[f(x, y) log f(x,y)
p

+(1−f(x, y)) log (1−f(x,y))
1−p

]dxdy

f = τ
1

3?
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THANK YOU
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