
STT 872, 867-868 Fall Preliminary Examination
Wednesday, August 21, 2024

12:30 - 5:30 pm

INSTRUCTIONS:

1. This examination is closed book. Every statement you make must be substantiated. You may do this
either by quoting a theorem/result and verifying its applicability or by proving things directly. You may
use one part of a problem to solve the other part, even if you are unable to solve the part being used.
A complete and clearly written solution of a problem will get a more favorable review than a partial
solution.

2. You must start solution of each problem on a separate page. Be sure to put the number assigned to you
on the top left corner of every page of your solution. Also please number the pages with “n/m” (top right
corner), where n is the current page number and m is the total number of pages, to keep the ordering and
to avoid missing any pages during scanning.

3. Please refrain from discussing the exam in any way before the results are made available.
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1. Let X1, · · · , Xn be i.i.d. from a Geometric distribution with a parameter p ∈ (0, 1), i.e.

P (Xi = x) = p(1− p)x, x = 0, 1, 2, · · · .

(1a) (4 pts) Find the MLE of 1/p2. Use delta-method to find its asymptotic variance, n > 1.

(1b) (4 pts) Let g(p) = 1/p2 and let the loss function be E(pδ(X1, · · · , Xn)− 1/p)2. For n > 1, using
a Beta(a, b) prior find a Bayes estimator of g(p) where the density of Beta(a, b) prior is given by

π(p) =
Γ(a+ b)

Γ(a)Γ(b)
pa−1(1− p)b−1, p ∈ (0, 1)

(1d) (3 pts) For n = 1, show that I(X = 0) is a minimax estimator of p under the loss function
L(., p) = (.− p)2/(p(1− p)).

(1c) (4 pts) Derive a UMP unbiased test of size α ∈ (0, 1) for testing H0 : 1/3 ≤ p ≤ 2/3 vs H1 : p <

1/3 or p > 2/3 in the fullest possible detail, n > 1.

2. Let X1, · · · , Xn follows Exp(θ, 1) where the density of Exp(θ, 1) is given by

f(x; θ) = e−(x−θ), x > θ, θ > 0.

(2a) (3 pts) Show that Tn = X(1)−1/n is the MRE estimator of θ under the squared error loss: L(., θ) =
(.− θ)2 for n > 1.

(2b) (3 pts) Show that the inequality

var(Tn) ≥
1

nE
[
∂/∂θ log e−(X−θ)

]2
does not hold for any θ ∈ R and n > 1. Does this conflict with Cramer-Rao lower bound?

3. Let X1, · · · , Xn are i.i.d. from the normal distribution N(0, σ2) with σ2 > 0 unknown.

(3a) (4 pts) Show that the MLE of σ2 is inadmissible for the squared error loss: L(., σ2) = (.− σ2)2 for
n > 1. (Hint: You may use E(χ2

(n)) = n and var(χ2
(n)) = 2n).

(3b) (4 pts) Find the uniformly most accurate confidence bound for σ2 using the uniformly most powerful
test for H0 : σ = σ0 versus H1 : σ > σ0 assuming n > 1.

4. Let a parameter θ ∈ Θ = (1, 2) and Y1, · · · , Yn a random sample from the uniform distribution U(θ, 2θ).
Suppose that instead of Y1, · · · , Yn, one observes X1, · · · , Xn which are

Xi =

{
2, Yi > 2

Yi, Yi ≤ 2

(4a) (3 pts) Denote the σ−finite measure ν = δ+m in which δ is the point mass measure at {2} and m

is the Lebesgue measure. Show that the pdf of X1 with respect to ν is

fθ(x) =
2θ − 2

θ
I{2}(x) +

1

θ
I(θ,2)(x)
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(4b) (4 pts) Let R =
∑n

i=1 I(Xi = 2), show that the UMVUE of 1 − θ−1 based on X1, · · · , Xn is
n−1R/2 for n > 1.

(4c) (4 pts) Based only on X1, construct a MP test of level α ∈ (0, 1) for the hypotheses H0 : θ = θ0 vs
H1 : θ = θ1, where 1 < θ0 < θ1 < 2 in the fullest possible detail.

5. Consider two full-rank linear regression models:

yi = x′iβ + ϵi, i = 1, 2, . . . , n,

zi = x′iγ + ξi, i = 1, 2, . . . , n,

where yi ∈ R, zi ∈ R, xi ∈ Rp. The two models share the same design matrix, but the error terms are
assumed correlated. Specifically, for each i = 1, 2, . . . , n, the vector (ϵi, ξi) is independently sampled

from the bivariate Gaussian N (0,Σ) with the covariance matrix Σ =

(
a b

b c

)
∈ R2×2. It is known that

the MLE for Σ, denoted by Σ̂ =

(
â b̂

b̂ ĉ

)
, takes the following form

â =
1

n
Y ′(I −X(X ′X)−1X ′)Y, b̂ =

1

n
Y ′(I −X(X ′X)−1X ′)Z,

ĉ =
1

n
Z ′(I −X(X ′X)−1X ′)Z,

where X = (x1, . . . , xn)
′ ∈ Rn×p, Y = (y1, . . . , yn)

′ ∈ Rn, Z = (z1, . . . , zn)
′ ∈ Rn. Further denote

the OLS under the two models by β̂, γ̂, respectively.

(5a) (5 pts) Suppose b = 0, a = 2c and c is unknown. Derive a α-level rejection region for the test
H0 : β = γ,H1 : β ̸= γ.

(5b) (5 pts) Suppose {a, b, c} are all unknown. For a given vector ℓ ∈ Rp, construct a confidence interval
for ℓ′β+2ℓ′γ with coverage probability equal to 1−α (Hint: build a pivot with F-distribution based
on ℓ′β̂ + 2ℓ′γ̂ and Σ̂).

(5c) (5 pts) Suppose {a, b, c} are all unknown. For a given vector ℓ ∈ Rp, prove that ℓ′β̂+2ℓ′γ̂ is BLUE
for ℓ′β + 2ℓ′γ, namely, for any linear estimator t′1Y + t′2Z with t1, t2 ∈ Rn that is unbiased for
ℓ′β + 2ℓ′γ, it holds that Var(t′1Y + t′2Z) ≥ Var(ℓ′β̂ + 2ℓ′γ̂).

6. Consider the model,

yi = β1x
2
i + β2xi + β3︸ ︷︷ ︸

:=f(xi)

+ϵi, i = 1, 2, . . . , n,

where xi ∈ R, ϵ1, . . . , ϵn
i.i.d.∼ N (0, 1), and the unknown parameters are {β1, β2, β3}.

(6a) (4 pts) Is β3 always estimable? Provide your argument. Is β1x21 + β2x1 + β3 estimable? If so, give
a confidence interval with coverage probability equal to 1− α.

(6b) (5 pts) For any given x ∈ R, the kernel method outputs the prediction f̂h(x) given by

f̂h(x) =

∑n
i=1 e

− (x−xi)
2

h2 yi∑n
i=1 e

− (x−xi)
2

h2

,
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where h > 0 is the bandwidth that controls the bias-variance tradeoff. First, compute the expected
prediction error at a single point x0 and describe how the bias and variance are affected as h varies.
Then, give an unbiased estimator for the expected in-sample prediction error.

7. A data measures the total body bone mineral density for teenagers. We denote the measurement of the
ith teenager at time tij by yij , and assume the following model,

yij = αitij + ϵij , i = 1, 2, . . . , N, j = 1, 2, . . . , ni, (1)

where all the ϵij’s are independently sampled from N (0, σ2). To model the dependence of the bone
density gain on calcium intake, we further assume

αi = c · di + ξi, i = 1, . . . , N, (2)

where di ∈ R denotes the daily calcium supplement of the ith teenager, and all the ξi’s are independently
sampled from N (0, τ2). The observed data consists of {(yi1, . . . , yini , ti1, . . . , tini , di)}Ni=1, and the
unknown parameters are {c, τ2, σ2}.

(7a) (5 pts) Plug (2) into (1) and show that the resulting model is an example of linear mixed models.
Provide conditions to ensure its identifiability.

(7b) (5 pts) Suppose the sums of squared times {
∑ni

j=1 t
2
ij}Ni=1 are all equal. Derive the closed-form solu-

tion for the MLE of c (Hint: the Woodbury matrix identity is (A+UCV )−1 = A−1−A−1U(C−1+

V A−1U)−1V A−1, where A ∈ Rn×n, U ∈ Rn×k, C ∈ Rk×k, V ∈ Rk×n).

(7c) (6 pts) Suppose the condition in (7b) is not necessarily satisfied. Derive the EM algorithm for
computing the MLE of {c, τ2, σ2}.
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