STT 872, 867-868 Fall Preliminary Examination Wednesday, August 21, 2024 12:30 - 5:30 pm

INSTRUCTIONS:

- This examination is closed book. Every statement you make must be substantiated. You may do this either by quoting a theorem/result and verifying its applicability or by proving things directly. You may use one part of a problem to solve the other part, even if you are unable to solve the part being used. A complete and clearly written solution of a problem will get a more favorable review than a partial solution.
- 2. You must start solution of each problem on a separate page. Be sure to put the number assigned to you on the top left corner of every page of your solution. Also please number the pages with "n/m" (top right corner), where n is the current page number and m is the total number of pages, to keep the ordering and to avoid missing any pages during scanning.
- 3. Please refrain from discussing the exam in any way before the results are made available.

1. Let X_1, \dots, X_n be i.i.d. from a Geometric distribution with a parameter $p \in (0, 1)$, i.e.

$$P(X_i = x) = p(1-p)^x, \ x = 0, 1, 2, \cdots$$

- (1a) (4 pts) Find the MLE of $1/p^2$. Use delta-method to find its asymptotic variance, n > 1.
- (1b) (4 pts) Let $g(p) = 1/p^2$ and let the loss function be $\mathbb{E}(p\delta(X_1, \dots, X_n) 1/p)^2$. For n > 1, using a Beta(a, b) prior find a Bayes estimator of g(p) where the density of Beta(a, b) prior is given by

$$\pi(p) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} p^{a-1} (1-p)^{b-1}, \ p \in (0,1)$$

- (1d) (3 pts) For n = 1, show that I(X = 0) is a minimax estimator of p under the loss function $L(.,p) = (.-p)^2/(p(1-p)).$
- (1c) (4 pts) Derive a UMP unbiased test of size $\alpha \in (0, 1)$ for testing $H_0: 1/3 \le p \le 2/3$ vs $H_1: p < 1/3$ or p > 2/3 in the fullest possible detail, n > 1.
- 2. Let X_1, \dots, X_n follows $\text{Exp}(\theta, 1)$ where the density of $\text{Exp}(\theta, 1)$ is given by

$$f(x;\theta) = e^{-(x-\theta)}, x > \theta, \theta > 0.$$

- (2a) (3 pts) Show that $T_n = X_{(1)} 1/n$ is the MRE estimator of θ under the squared error loss: $L(., \theta) = (. \theta)^2$ for n > 1.
- (2b) (3 pts) Show that the inequality

$$\operatorname{var}(T_n) \ge \frac{1}{n\mathbb{E}\left[\partial/\partial\theta\log e^{-(X-\theta)}\right]^2}$$

does not hold for any $\theta \in \mathbb{R}$ and n > 1. Does this conflict with Cramer-Rao lower bound?

- 3. Let X_1, \dots, X_n are i.i.d. from the normal distribution $N(0, \sigma^2)$ with $\sigma^2 > 0$ unknown.
 - (3a) (4 pts) Show that the MLE of σ^2 is inadmissible for the squared error loss: $L(., \sigma^2) = (. \sigma^2)^2$ for n > 1. (Hint: You may use $\mathbb{E}(\chi^2_{(n)}) = n$ and $\operatorname{var}(\chi^2_{(n)}) = 2n$).
 - (3b) (4 pts) Find the uniformly most accurate confidence bound for σ^2 using the uniformly most powerful test for $H_0: \sigma = \sigma_0$ versus $H_1: \sigma > \sigma_0$ assuming n > 1.
- 4. Let a parameter $\theta \in \Theta = (1, 2)$ and Y_1, \dots, Y_n a random sample from the uniform distribution $U(\theta, 2\theta)$. Suppose that instead of Y_1, \dots, Y_n , one observes X_1, \dots, X_n which are

$$X_i = \begin{cases} 2, & Y_i > 2\\ Y_i, & Y_i \le 2 \end{cases}$$

(4a) (3 pts) Denote the σ -finite measure $\nu = \delta + m$ in which δ is the point mass measure at {2} and m is the Lebesgue measure. Show that the pdf of X_1 with respect to ν is

$$f_{\theta}(x) = \frac{2\theta - 2}{\theta} I_{\{2\}}(x) + \frac{1}{\theta} I_{(\theta, 2)}(x)$$

- (4b) (4 pts) Let $R = \sum_{i=1}^{n} I(X_i = 2)$, show that the UMVUE of $1 \theta^{-1}$ based on X_1, \dots, X_n is $n^{-1}R/2$ for n > 1.
- (4c) (4 pts) Based only on X_1 , construct a MP test of level $\alpha \in (0, 1)$ for the hypotheses $H_0: \theta = \theta_0$ vs $H_1: \theta = \theta_1$, where $1 < \theta_0 < \theta_1 < 2$ in the fullest possible detail.
- 5. Consider two full-rank linear regression models:

$$y_i = x'_i \beta + \epsilon_i, \quad i = 1, 2, \dots, n,$$

$$z_i = x'_i \gamma + \xi_i, \quad i = 1, 2, \dots, n,$$

where $y_i \in \mathbb{R}, z_i \in \mathbb{R}, x_i \in \mathbb{R}^p$. The two models share the same design matrix, but the error terms are assumed correlated. Specifically, for each i = 1, 2, ..., n, the vector (ϵ_i, ξ_i) is independently sampled from the bivariate Gaussian $\mathcal{N}(0, \Sigma)$ with the covariance matrix $\Sigma = \begin{pmatrix} a & b \\ b & c \end{pmatrix} \in \mathbb{R}^{2 \times 2}$. It is known that

the MLE for Σ , denoted by $\hat{\Sigma} = \begin{pmatrix} \hat{a} & \hat{b} \\ \hat{b} & \hat{c} \end{pmatrix}$, takes the following form $\hat{a} = \frac{1}{n}Y'(I - X(X'X)^{-1}X')Y, \quad \hat{b} = \frac{1}{n}Y'(I - X(X'X)^{-1}X')Z,$ $\hat{c} = \frac{1}{n}Z'(I - X(X'X)^{-1}X')Z,$

where $X = (x_1, \ldots, x_n)' \in \mathbb{R}^{n \times p}$, $Y = (y_1, \ldots, y_n)' \in \mathbb{R}^n$, $Z = (z_1, \ldots, z_n)' \in \mathbb{R}^n$. Further denote the OLS under the two models by $\hat{\beta}, \hat{\gamma}$, respectively.

- (5a) (5 pts) Suppose b = 0, a = 2c and c is unknown. Derive a α -level rejection region for the test $H_0: \beta = \gamma, H_1: \beta \neq \gamma$.
- (5b) (5 pts) Suppose $\{a, b, c\}$ are all unknown. For a given vector $\ell \in \mathbb{R}^p$, construct a confidence interval for $\ell'\beta + 2\ell'\gamma$ with coverage probability equal to 1α (Hint: build a pivot with F-distribution based on $\ell'\hat{\beta} + 2\ell'\hat{\gamma}$ and $\hat{\Sigma}$).
- (5c) (5 pts) Suppose $\{a, b, c\}$ are all unknown. For a given vector $\ell \in \mathbb{R}^p$, prove that $\ell'\hat{\beta} + 2\ell'\hat{\gamma}$ is BLUE for $\ell'\beta + 2\ell'\gamma$, namely, for any linear estimator $t'_1Y + t'_2Z$ with $t_1, t_2 \in \mathbb{R}^n$ that is unbiased for $\ell'\beta + 2\ell'\gamma$, it holds that $\operatorname{Var}(t'_1Y + t'_2Z) \ge \operatorname{Var}(\ell'\hat{\beta} + 2\ell'\hat{\gamma})$.
- 6. Consider the model,

$$y_i = \underbrace{\beta_1 x_i^2 + \beta_2 x_i + \beta_3}_{:=f(x_i)} + \epsilon_i, \quad i = 1, 2, \dots, n,$$

where $x_i \in \mathbb{R}, \epsilon_1, \ldots, \epsilon_n \overset{i.i.d.}{\sim} \mathcal{N}(0, 1)$, and the unknown parameters are $\{\beta_1, \beta_2, \beta_3\}$.

- (6a) (4 pts) Is β_3 always estimable? Provide your argument. Is $\beta_1 x_1^2 + \beta_2 x_1 + \beta_3$ estimable? If so, give a confidence interval with coverage probability equal to 1α .
- (6b) (5 pts) For any given $x \in \mathbb{R}$, the kernel method outputs the prediction $\hat{f}_h(x)$ given by

$$\hat{f}_h(x) = \frac{\sum_{i=1}^n e^{-\frac{(x-x_i)^2}{h^2}} y_i}{\sum_{i=1}^n e^{-\frac{(x-x_i)^2}{h^2}}},$$

where h > 0 is the bandwidth that controls the bias-variance tradeoff. First, compute the expected prediction error at a single point x_0 and describe how the bias and variance are affected as h varies. Then, give an unbiased estimator for the expected in-sample prediction error.

7. A data measures the total body bone mineral density for teenagers. We denote the measurement of the i^{th} teenager at time t_{ij} by y_{ij} , and assume the following model,

$$y_{ij} = \alpha_i t_{ij} + \epsilon_{ij}, \quad i = 1, 2, \dots, N, \ j = 1, 2, \dots, n_i,$$
(1)

where all the ϵ_{ij} 's are independently sampled from $\mathcal{N}(0, \sigma^2)$. To model the dependence of the bone density gain on calcium intake, we further assume

$$\alpha_i = c \cdot d_i + \xi_i, \quad i = 1, \dots, N, \tag{2}$$

where $d_i \in \mathbb{R}$ denotes the daily calcium supplement of the i^{th} teenager, and all the ξ_i 's are independently sampled from $\mathcal{N}(0, \tau^2)$. The observed data consists of $\{(y_{i1}, \ldots, y_{in_i}, t_{i1}, \ldots, t_{in_i}, d_i)\}_{i=1}^N$, and the unknown parameters are $\{c, \tau^2, \sigma^2\}$.

- (7a) (5 pts) Plug (2) into (1) and show that the resulting model is an example of linear mixed models. Provide conditions to ensure its identifiability.
- (7b) (5 pts) Suppose the sums of squared times $\{\sum_{j=1}^{n_i} t_{ij}^2\}_{i=1}^N$ are all equal. Derive the closed-form solution for the MLE of *c* (Hint: the Woodbury matrix identity is $(A+UCV)^{-1} = A^{-1} A^{-1}U(C^{-1} + VA^{-1}U)^{-1}VA^{-1}$, where $A \in \mathbb{R}^{n \times n}, U \in \mathbb{R}^{n \times k}, C \in \mathbb{R}^{k \times k}, V \in \mathbb{R}^{k \times n}$).
- (7c) (6 pts) Suppose the condition in (7b) is not necessarily satisfied. Derive the EM algorithm for computing the MLE of $\{c, \tau^2, \sigma^2\}$.