
Preliminary Exam: Probability, August 2024.  

Modality:  In-person. 

Time: 10:00am - 3:00pm, Friday, August 23, 2024.  

Place: C506 Wells Hall.  

 

Your goal should be to demonstrate mastery of probability theory and maturity of 

thought. Your arguments should be clear, careful and complete.  

The exam consists of 6 main problems, each with several steps designed to help 

you in the overall solution.  

 

Important: If you cannot solve a certain part of a problem, you still may use 

its conclusion in a later part!  

 

Please make sure to apply the following guidelines:  

 

1. On each page you turn in, write your assigned code number. Don’t write your 

name on any page.  

 

2. Start each problem on a new page.  

 

  



Problem 1.  Let {𝑋𝑛, 𝑛 ≥ 1} be a sequence of random variables such that 𝐸(𝑋𝑛)  =  0, 
 
                𝐸(𝑋𝑛

2)  =  
1

𝑛 ln(𝑛+1)
 , 𝐸(𝑋𝑛 𝑋𝑛+1)  =  

2

𝑛2
 ,   and    𝐸(𝑋𝑚 𝑋𝑛)  = 0    if   |𝑚 − 𝑛|≥  2. 

  

a. Denote by 𝜎𝑛2 the variance of 𝑆𝑛 = ∑ 𝑋𝑖
𝑛
𝑖=1 . Prove that   lim

𝑛 →∞

𝜎𝑛
2

 ln ln 𝑛 
 = 1. 

b. Prove that for every sequence {𝑎𝑛, 𝑛 ≥ 1}   of positive numbers with lim
𝑛 →∞

𝑎𝑛  = ∞,  we 

have 
                                               lim

𝑛 →∞

𝑆𝑛

 √𝑎𝑛∙ ln ln 𝑛 
 =  0  in probability and in  𝐿2(P). 

 
c. Prove that for every 𝜀 > 0 the following holds: 

(i)    ∑ 𝐸 (
𝑆𝑛
2

   𝑛∙ ln 𝑛∙ (ln ln𝑛)2+𝜀 
) < ∞∞

𝑛=1 , and   ∑ 𝑆𝑛
2

   𝑛∙ ln 𝑛∙ (ln ln 𝑛)2+𝜀  
∞
𝑛=1   converges a.s. 

(ii) lim
𝑛 →∞

𝑆𝑛

   √𝑛∙ ln 𝑛∙ (ln ln𝑛)2+𝜀  
 =  0      a. s. 

 

 

 

 

Problem 2.  Let  𝑋, 𝑋1, 𝑋2, … be i.i.d. sequence of positive random variables.  Let 0 < 𝛽 < 1.   Assume  

𝑃(𝑋 > 𝑥) ≤ 𝑥−𝛽 , 𝑥 > 1 

Let {𝑎𝑛}𝑛=1,2,…  be a sequence of positive real numbers that satisfies: ∑ 𝑎𝑛
𝛽∞

𝑛=1 < ∞.  Prove the 
following: 

a. ∑ 𝑃(∞
𝑛=1 𝑎𝑛𝑋 > 1) < ∞. 

 
b. (i)  ∑ 𝐸(∞

𝑛=1 𝑎𝑛𝑋 ∙ 1{𝑎𝑛𝑋<1}) < ∞ ,  
 
 (ii)  ∑ 𝐸(∞

𝑛=1 𝑎𝑛
2𝑋2 ∙ 1{𝑎𝑛𝑋<1}) < ∞. 

 
c. (i)   ∑ 𝑎𝑛𝑋𝑛

∞
𝑛=1 < ∞,  a.s. 

 
(ii)  Assume also that {𝑎𝑛}𝑛=1,2,… is non-decreasing. Prove:  𝑎𝑛 ∙ ∑ 𝑋𝑘

𝑛
𝑘=1 𝑛→∞

→   0, a.s. 

  



Problem 3. Let  {𝑋, 𝑋𝑛, 𝑛 ≥ 1} be a sequence of i.i.d. random variables whose characteristic 
function satisfies 
                                              𝜑(t) = 𝑒−|𝑡|

𝛼(1 +|𝑡|)  𝑓𝑜𝑟 − 1 < 𝑡 < 1, 
where 𝛼 ∈  (0, 2] is a constant. For 𝑛 ≥1, let  𝑆𝑛 = ∑ 𝑋𝑖

𝑛
𝑖=1  and let 𝜑𝑛(𝑡) be the characteristic 

functions of 𝑛−1/𝛼𝑆𝑛 .   
a. Find lim

𝑛 →∞
𝜑𝑛(𝑡).   

b. Prove that 𝑛−1/𝛼𝑆𝑛 converge in distribution to a random variable Y. 
 

c. Prove that the random variable Y in (ii) has a continuous and bounded probability 
density function. 

 

 

 

 

 

Problem 4.  Let {(𝑋𝑘,𝑌𝑘)}𝑘=1,2,…    be a sequence of pairs of random variables.  Denote 

  𝑆𝑛 = ∑ 𝑋𝑘 ,
𝑛
𝑘=1  𝑇𝑛 = ∑ 𝑌𝑘 ,

𝑛
𝑘=1  𝑛 = 1, 2, … 

a.  Assume that  ∑ 𝑃(𝑋𝑘 ≠ 𝑌𝑘) < ∞ , and let   
∞
𝑘=1  𝑎𝑛

𝑛→∞
→   ∞.  Prove that if 𝑇𝑛

𝑎𝑛
 converges in 

distribution to 𝑊, then 𝑆𝑛
𝑎𝑛

  converges in distribution to 𝑊 as well. 

 
b. From now on assume that { 𝑋𝑘}𝑘=1,2,… are independent and 𝑋1 = 0, 

 

 𝑋𝑘 = {
±1 with probability   

1

2
−

1

2∙𝑘2
 

±𝑘   with probability   
1

2∙𝑘2

  , 𝑘 = 2, 3, …  

 Let  𝑌0 = 0,  𝑌𝑘 = 𝑋𝑘 ∙ 1{𝑋𝑘=±1}, 𝑘 = 1,2,…  

Prove that 𝑉𝑎𝑟(𝑆𝑛)
2𝑛 𝑛→∞

→   1 and 𝑉𝑎𝑟(𝑇𝑛)
𝑛 𝑛→∞

→   1. 

 

c. (i)   Does the triangular array { 𝑋𝑘
√2𝑛
}𝑘=1,…,𝑛,   𝑛=1,2,… satisfy Lindberg condition?  What    

about the triangular array {𝑌𝑘
√𝑛
}𝑘=1,…,𝑛,   𝑛=1,2,…? 

(ii) Prove that 𝑆𝑛
√𝑛

  converges in distribution to 𝑁(0, 1).   

  



Problem 5. Here 𝑛 = 1, 2, …   Let {ℱ𝑛} be a sequence of 𝜎-algebras that satisfies ℱ𝑛 ⊂ ℱ𝑛+1.  Let 𝑇 <
∞, a. s. be a stopping time with respect to {ℱ𝑛}.  Let {𝑋𝑛} be a sequence of random variables, so that 
𝑋𝑛 ∈ ℱ𝑛, and 𝐸(𝑋𝑛) = 𝐸(𝑋1). Finally, assume that 𝜎(𝑋𝑛+1)and ℱ𝑛 are independent. 

a. Let 𝑆𝑛 = ∑ 𝑋𝑘
𝑛
𝑘=1 , 𝑆0 = 0   Prove: 

(i) 𝑆𝑇∧(𝑛+1) − 𝑆𝑇∧𝑛=𝑋𝑛+1 ∙ 1{𝑇≥𝑛+1},  where 𝑎 ∧ 𝑏 = min{ 𝑎, 𝑏}, 𝑎, 𝑏 ∈ ℛ 
(ii) 𝑆𝑇 = ∑ 𝑆𝑇∧(𝑛+1) − 𝑆𝑇∧𝑛

∞
𝑛=0 . 

b. Assume in this part that 𝑋𝑛 ≥ 0, a. s.  Prove:  
(i) Show by using part a that 𝐸(𝑆𝑇) = 𝐸(𝑋1) ∙ 𝐸(𝑇). Observe that  

 𝐸(𝑇) can be either finite or infinite.  
 Hint:  start by showing that 𝐸(𝑆𝑇∧(𝑛+1) − 𝑆𝑇∧𝑛) = 𝐸(𝑋1) ∙ 𝑃(𝑇 ≥ 𝑛 + 1)  

(ii)   As an example, consider  {𝑋𝑛} to be i.i.d. and 𝑃(𝑋1 = 0) = 𝑃(𝑋1 = 1) = 1/2.  
Let 𝑇 = min

𝑛≥1
{𝑆𝑛 = 2}. What is 𝐸(𝑇)? Also, how is T distributed? 

c. We drop here the assumption 𝑋𝑛 ≥ 0.  Assume instead that  sup
𝑛≥1

𝐸(|𝑋𝑛|) < ∞ , and that 

 𝐸(𝑇) < ∞.  Prove: 
(i) E( ∑ |𝑆𝑇∧(𝑛+1) − 𝑆𝑇∧𝑛|

∞
𝑛=0  )<∞ 

(ii)  Use c(i) to prove that 𝐸(𝑆𝑇) = 𝐸(𝑋1) ∙ 𝐸(𝑇) still holds.    
Hint:  Show first that 𝑆𝑇∧𝑚

𝑚→∞
→   𝑆𝑇 , a. s. , and then use a(ii) for the stopping time 

  𝑇 ∧ 𝑚  which is bounded by 𝑚. 

Problem 6.  Let {𝐵1(𝑡), 𝐵2(𝑡), 𝑡 ≥ 0} be 2 independent standard Brownian motions (SBM).  
Let Ω = {(𝑡, 𝑢) ∈ 𝑅2:  0 ≤ 𝑡, 𝑢 ≤ 1},  and let 𝐻 = 𝐿2(Ω,ℬ, λ), where ℬ is the Borel  𝜎 algebra, 

and λ is the Lebesgue measure.  Let  〈𝑓, 𝑔 〉 = ∫ ∫ 𝑓(𝑡, 𝑢) ∙ 𝑔(𝑡, 𝑢)dtdu
1

𝑡=0

1

𝑢=0
, 𝑓, 𝑔 ∈ 𝐻.  

 In what follows (𝑡, 𝑢) ∈ Ω. 

a. Let 𝐵(𝑡, 𝑢) = 𝐵1(𝑡) ∙ 𝐵2(𝑢).  Calculate:  
(i)  E (𝐵(𝑡, 𝑢)), and 
(ii)   COV[𝐵(𝑡1, 𝑢1), 𝐵(𝑡2, 𝑢2)].  

b. Let {𝜑𝑘}𝑘≥1 ⊆ 𝐻 be a complete orthonormal basis of 𝐻, namely  〈𝜑
𝑘
,𝜑
𝑚
〉 = {

1  𝑖𝑓 𝑘 = 𝑚
0  𝑖𝑓 𝑘 ≠ 𝑚 

,  

𝑓 = ∑ 〈𝑓,𝜑
𝑘
〉∞

𝑘=1 𝜑
𝑘
, and  〈𝑓, 𝑔〉 = ∑ 〈𝑓,𝜑

𝑘
〉〈𝑔,𝜑

𝑘
〉∞

𝑘=1 , for every 𝑓, 𝑔 ∈ 𝐻.  
Let {𝑍𝑘}𝑘≥1  be independent and standard normal random variables. 
Define 𝑇(𝑓) = ∑ 〈𝑓,𝜑𝑘〉

∞
𝑘=1 𝑍𝑘 , 𝑓 ∈ 𝐻.   

(i) Verify that the series ∑ 〈𝑓,𝜑
𝑘
〉∞

𝑘=1 𝑍𝑘 converges almost surely. Thus, 𝑇(𝑓) is well 
defined for every 𝑓 ∈ 𝐻. 

(ii) Prove that 〈𝑓, 𝑔〉 = COV[𝑇(𝑓), 𝑇(𝑔)] for all 𝑓, 𝑔 ∈ 𝐻. 
(iii) How is 𝑇(𝑓) distributed? 

c. Prove for (𝑡, 𝑢) ∈ Ω  and  𝑓𝑡,𝑢(𝑥, 𝑦) = {
1  𝑖𝑓 0 ≤ 𝑥 ≤ 𝑡, 0 ≤ 𝑦 ≤ 𝑢 
0                         otherwise 

 

(i) 𝐸(𝐵(𝑡, 𝑢)) = 𝐸 (𝑇(𝑓𝑡,𝑢)) , and  COV[𝐵(𝑡1, 𝑢1), 𝐵(𝑡2, 𝑢2)] = COV[𝑇(𝑓𝑡1,𝑢1), 𝑇(𝑓𝑡2,𝑢2)] 

(ii) Is 𝐵(𝑡, 𝑢) =  𝑇(𝑓𝑡,𝑢) in distribution?  Explain. 

 


