Preliminary Exam: Probability, August 2024. Modality: In-person. Time: 10:00am - 3:00pm, Friday, August 23, 2024. Place: C506 Wells Hall.

Your goal should be to demonstrate mastery of probability theory and maturity of thought. Your arguments should be clear, careful and complete. The exam consists of 6 main problems, each with several steps designed to help you in the overall solution.

Important: If you cannot solve a certain part of a problem, you still may use its conclusion in a later part!

Please make sure to apply the following guidelines:

1. On each page you turn in, write your assigned code number. Don't write your name on any page.

2. Start each problem on a new page.

Problem 1. Let $\{X_n, n \ge 1\}$ be a sequence of random variables such that $E(X_n) = 0$,

$$E(X_n^2) = \frac{1}{n \ln(n+1)}, E(X_n X_{n+1}) = \frac{2}{n^2}, \text{ and } E(X_m X_n) = 0 \text{ if } |m-n| \ge 2.$$

- a.
- Denote by σ_n^2 the variance of $S_n = \sum_{i=1}^n X_i$. Prove that $\lim_{n \to \infty} \frac{\sigma_n^2}{\ln \ln n} = 1$. Prove that for every sequence $\{a_n, n \ge 1\}$ of positive numbers with $\lim_{n \to \infty} a_n = \infty$, we b. have

$$\lim_{n \to \infty} \frac{S_n}{\sqrt{a_n \cdot \ln \ln n}} = 0 \text{ in probability and in } L^2(P).$$

c. Prove that for every
$$\varepsilon > 0$$
 the following holds:
(i) $\sum_{n=1}^{\infty} E\left(\frac{S_n^2}{n \cdot \ln n \cdot (\ln \ln n)^{2+\varepsilon}}\right) < \infty$, and $\sum_{n=1}^{\infty} \frac{S_n^2}{n \cdot \ln n \cdot (\ln \ln n)^{2+\varepsilon}}$ converges a.s.
(ii) $\lim_{n \to \infty} \frac{S_n}{\sqrt{n \cdot \ln n \cdot (\ln \ln n)^{2+\varepsilon}}} = 0$ a.s.

Problem 2. Let $X, X_1, X_2, ...$ be i.i.d. sequence of positive random variables. Let $0 < \beta < 1$. Assume

$$P(X > x) \le x^{-\beta}, x > 1$$

Let $\{a_n\}_{n=1,2,\dots}$ be a sequence of positive real numbers that satisfies: $\sum_{n=1}^{\infty} a_n^{\beta} < \infty$. Prove the following:

- a. $\sum_{n=1}^{\infty} P(a_n X > 1) < \infty.$
- b. (i) $\sum_{n=1}^{\infty} E(a_n X \cdot 1_{\{a_n X < 1\}}) < \infty$,
 - (ii) $\sum_{n=1}^{\infty} E(a_n^2 X^2 \cdot 1_{\{a_n X < 1\}}) < \infty$.
- c. (i) $\sum_{n=1}^{\infty} a_n X_n < \infty$, a.s.
 - (ii) Assume also that $\{a_n\}_{n=1,2,\dots}$ is non-decreasing. Prove: $a_n \cdot \sum_{k=1}^n X_k \xrightarrow[n \to \infty]{} 0$, a.s.

Problem 3. Let {X, X_n , $n \ge 1$ } be a sequence of i.i.d. random variables whose characteristic function satisfies

$$\varphi(t) = e^{-|t|^{\alpha}(1+|t|)} for -1 < t < 1,$$

where $\alpha \in (0,2]$ is a constant. For $n \ge 1$, let $S_n = \sum_{i=1}^n X_i$ and let $\varphi_n(t)$ be the characteristic functions of $n^{-1/\alpha}S_n$.

- a. Find $\lim_{n \to \infty} \varphi_n(t)$.
- b. Prove that $n^{-1/\alpha}S_n$ converge in distribution to a random variable Y.
- c. Prove that the random variable *Y* in (ii) has a continuous and bounded probability density function.

Problem 4. Let $\{(X_k, Y_k)\}_{k=1,2,...}$ be a sequence of pairs of random variables. Denote

 $S_n = \sum_{k=1}^n X_k, T_n = \sum_{k=1}^n Y_k, n = 1, 2, ...$

- a. Assume that $\sum_{k=1}^{\infty} P(X_k \neq Y_k) < \infty$, and let $a_n \xrightarrow[n \to \infty]{} \infty$. Prove that if $\frac{T_n}{a_n}$ converges in distribution to W, then $\frac{S_n}{a_n}$ converges in distribution to W as well.
- b. From now on assume that $\{X_k\}_{k=1,2,\dots}$ are independent and $X_1 = 0$,

$$X_{k} = \begin{cases} \pm 1 \text{ with probability } \frac{1}{2} - \frac{1}{2 \cdot k^{2}} \\ \pm k \text{ with probability } \frac{1}{2 \cdot k^{2}} \end{cases}, k = 2, 3, \dots \\ \text{Let } Y_{0} = 0, Y_{k} = X_{k} \cdot 1_{\{X_{k} = \pm 1\}}, k = 1, 2, \dots \\ \text{Prove that } \frac{Var(S_{n})}{2n} \underset{n \to \infty}{\longrightarrow} 1 \text{ and } \frac{Var(T_{n})}{n} \underset{n \to \infty}{\longrightarrow} 1. \end{cases}$$

- c. (i) Does the triangular array $\{\frac{X_k}{\sqrt{2n}}\}_{k=1,...,n, n=1,2,...}$ satisfy Lindberg condition? What about the triangular array $\{\frac{Y_k}{\sqrt{n}}\}_{k=1,...,n, n=1,2,...}$?
 - (ii) Prove that $\frac{S_n}{\sqrt{n}}$ converges in distribution to N(0, 1).

Problem 5. Here n = 1, 2, ... Let $\{\mathcal{F}_n\}$ be a sequence of σ -algebras that satisfies $\mathcal{F}_n \subset \mathcal{F}_{n+1}$. Let $T < \infty$, a. s. be a stopping time with respect to $\{\mathcal{F}_n\}$. Let $\{X_n\}$ be a sequence of random variables, so that $X_n \in \mathcal{F}_n$, and $E(X_n) = E(X_1)$. Finally, assume that $\sigma(X_{n+1})$ and \mathcal{F}_n are independent.

- a. Let $S_n = \sum_{k=1}^n X_k$, $S_0 = 0$ Prove:
 - (i) $S_{T \land (n+1)} S_{T \land n} = X_{n+1} \cdot 1_{\{T \ge n+1\}}$, where $a \land b = \min\{a, b\}, a, b \in \mathcal{R}$
 - (ii) $S_T = \sum_{n=0}^{\infty} S_{T \wedge (n+1)} S_{T \wedge n}.$
- b. Assume in this part that $X_n \ge 0$, a.s. Prove:
 - (i) Show by using part a that $E(S_T) = E(X_1) \cdot E(T)$. Observe that E(T) can be either finite or infinite. Hint: start by showing that $E(S_{T \land (n+1)} - S_{T \land n}) = E(X_1) \cdot P(T \ge n+1)$
 - (ii) As an example, consider $\{X_n\}$ to be i.i.d. and $P(X_1 = 0) = P(X_1 = 1) = 1/2$. Let $T = \min_{n>1} \{S_n = 2\}$. What is E(T)? Also, how is T distributed?
- c. We drop here the assumption $X_n \ge 0$. Assume instead that $\sup_{n\ge 1} E(|X_n|) < \infty$, and that
 - $E(T) < \infty$. Prove:
 - (i) $\mathsf{E}(\sum_{n=0}^{\infty} |S_{T \wedge (n+1)} S_{T \wedge n}|) < \infty$
 - (ii) Use c(i) to prove that $E(S_T) = E(X_1) \cdot E(T)$ still holds. Hint: Show first that $S_{T \wedge m} \xrightarrow{m \to \infty} S_T$, a. s., and then use a(ii) for the stopping time $T \wedge m$ which is bounded by m.

Problem 6. Let $\{B_1(t), B_2(t), t \ge 0\}$ be 2 independent standard Brownian motions (SBM). Let $\Omega = \{(t, u) \in \mathbb{R}^2: 0 \le t, u \le 1\}$, and let $H = L^2(\Omega, \mathcal{B}, \lambda)$, where \mathcal{B} is the Borel σ algebra, and λ is the Lebesgue measure. Let $\langle f, g \rangle = \int_{u=0}^{1} \int_{t=0}^{1} f(t, u) \cdot g(t, u) dt du$, $f, g \in H$.

In what follows $(t, u) \in \Omega$.

- a. Let $B(t, u) = B_1(t) \cdot B_2(u)$. Calculate:
 - (i) E(B(t, u)), and
 - (ii) $COV[B(t_1, u_1), B(t_2, u_2)].$

b. Let $\{\varphi_k\}_{k\geq 1} \subseteq H$ be a complete orthonormal basis of H, namely $\langle \varphi_k, \varphi_m \rangle = \begin{cases} 1 & \text{if } k = m \\ 0 & \text{if } k \neq m \end{cases}$,

 $f = \sum_{k=1}^{\infty} \langle f, \varphi_k \rangle \varphi_k$, and $\langle f, g \rangle = \sum_{k=1}^{\infty} \langle f, \varphi_k \rangle \langle g, \varphi_k \rangle$, for every $f, g \in H$. Let $\{Z_k\}_{k \ge 1}$ be independent and standard normal random variables. Define $T(f) = \sum_{k=1}^{\infty} \langle f, \varphi_k \rangle Z_k, f \in H$.

- (i) Verify that the series $\sum_{k=1}^{\infty} \langle f, \varphi_k \rangle Z_k$ converges almost surely. Thus, T(f) is well
 - defined for every $f \in H$.
- (ii) Prove that $\langle f, g \rangle = COV[T(f), T(g)]$ for all $f, g \in H$.
- (iii) How is T(f) distributed?
- c. Prove for $(t, u) \in \Omega$ and $f_{t,u}(x, y) = \begin{cases} 1 & \text{if } 0 \le x \le t, 0 \le y \le u \\ 0 & \text{otherwise} \end{cases}$
 - (i) $E(B(t,u)) = E(T(f_{t,u}))$, and $COV[B(t_1,u_1), B(t_2,u_2)] = COV[T(f_{t_1,u_1}), T(f_{t_2,u_2})]$
 - (ii) Is $B(t, u) = T(f_{t,u})$ in distribution? Explain.