
Preliminary Exam: Probability.  

 

Time:  10:00am - 3:00pm, Thursday, August 17, 2023.   

Place:  C506 Wells Hall. 

 

Your goal should be to demonstrate mastery of probability theory and maturity of thought. Your 

arguments should be clear, careful and complete. 

The exam consists of six main problems, each with several steps designed to help you in the 

overall solution.  

 

Important:  If you cannot solve a certain part of a problem, you still may use its conclusion 

in a later part!  

 

Please make sure to apply the following guidelines: 

 

1. On each page you turn in, write your assigned code number.  Don’t write your name on 

any page. 

 

2. Start each problem on a new page. 

  



Problem 1.  Let {𝐵𝑘}𝑘=1,2,3,4 be 4 events in a probability space.  

Let 1𝐵(𝜔) = {
1, 𝜔 ∈ 𝐵
0,   𝜔 ∈ 𝐵𝑐

  be the indicator function of any event B whose complement is 𝐵𝑐 .   

Let 𝐴 = ⋂ 𝐵𝑘
3
𝑘=1 .   

a. Prove  1𝐴 = ∏ (1 − 1𝐵𝑘
𝑐

3
𝑘=1 ) 

 

b. Show by using part a that 

 

 𝑃(𝐴) = 1 − ∑ 𝑃(𝐵𝑘
𝑐) + ∑ 𝑃(𝐵𝑘

𝑐 ∩ 𝐵𝑙
𝑐

1≤𝑘<𝑙≤31≤𝑘≤3 ) − 𝑃(⋂ 𝐵𝑘
𝑐3

𝑘=1 ) 

 

c. Extend part b to the case 𝐴 = ⋂ 𝐵𝑘
4
𝑘=1 . 

 

  



Problem 2.  Let {𝑋𝑘}, 𝑘 = 1, 2, …    be a sequence of random variables.  In this problem all 

convergences are as 𝑘 → ∞. 

a.  Prove that 𝑋𝑘 → 0 in probability if and only if  𝑋𝑘 → 0 in distribution. 

 

b. (i) Prove that if 𝑋𝑘 → 0, a.s.  then 𝑃(⋃ {|𝑋𝑚| > 𝜀
∞
𝑚=𝑘 }) → 0  for each 𝜀 > 0.   

(ii) Show how to conclude from (i) that convergence a.s. implies convergence in 

probability. 

 

c.   Assume that {𝑋𝑘} are independent, P(|𝑋𝑘| > 1) =
1

𝑘
 , 𝑘 = 1, 2, …     and  

P(|𝑋𝑘| ≤
1

√𝑘
) → 1.   Show that 𝑋𝑘 → 0 in probability, but 𝑋𝑘 → 0  a.s. is false. 

 

  



Problem 3.  Let 𝑋, 𝑋1, … , 𝑋𝑛 , … be a sequence of i.i.d. random variables such that 𝑋 is symmetric (namely  

𝑋 = −𝑋 in distribution), and 𝑃(|𝑋| > 𝑥) = {
1  if   0 ≤ 𝑥 < 𝑒
1

𝑥2∙ln (𝑥)
  if  𝑥 ≥ 𝑒 

Let 𝑌𝑛,𝑚 ≡ 𝑋𝑚 ∙ 1{|𝑋𝑚|≤√𝑛} , 𝑚 = 1,… , 𝑛, 𝑛 = 1,2,… 

Solve the following: 

a. Calculate 𝐸(𝑋2).     

b.   Prove  

(i) ∑ 𝑃(𝑛
𝑚=1 𝑌𝑛,𝑚 ≠ 𝑋𝑚)

𝑛→∞
→   0. 

(ii) 𝐸(𝑌𝑛,𝑚
2 )~2 ln(ln(𝑛)),   as  𝑛 → ∞. 

 

c. Prove that the following two sequences converge in distribution as  𝑛 → ∞, and identify the 

limit distribution. 

(i)   
∑ 𝑌𝑛,𝑚
𝑛
𝑚=1

√2 ln(ln(𝑛))
   

(ii) 
∑ 𝑋𝑚
𝑛
𝑚=1

√2 ln(ln(𝑛))
   

 

  



Problem 4.  Let {𝐵𝑡, 𝑡 ≥ 0} be a standard Brownian motion (SBM) equipped with its canonical 

filtration, {ℱ𝑡}, 𝑡 ≥ 0.   

Let 𝑋 be a random variable which gets exactly 3 distinct and non-zero values denoted by  {𝑥𝑘}, 

𝑘 = 1, 2, 3.  Also, let  𝐴𝑘 = {𝑋 = 𝑥𝑘}, 𝑃(𝐴𝑘) = 𝑝𝑘 > 0, 𝑘 = 1, 2, 3.  Assume that 𝐸(𝑋) = 0. 

a. Let  𝒢 = 𝜎{𝐴1, 𝐴2 ∪ 𝐴3} and denote 𝑌 = 𝐸𝒢(𝑋).   

(i).  How many values does 𝑌 get?  What is 𝐸(𝑌) ? What can you say about the event 

{𝑋 = 𝑌}? 

(ii)  Use the symbols {𝑥𝑘, 𝑝𝑘}, 𝑘 = 1, 2, 3  to present the explicit distribution of 𝑌. 

 

b. Define a stopping time with respect to the SBM filtration, denoted by  𝜏1, so we 

 have 𝑌 = 𝐵𝜏1 in distribution.  Prove your answer.   

 

c.  Find a stopping time with respect to the SBM filtration, denoted by  𝜏2, so that 

(i) 𝑋 = 𝐵𝜏2  in distribution, and  

(ii)  𝜏2 ≥ 𝜏1, a. s.  

Hint. Differentiate between the events {𝑋 = 𝑌} and {𝑋 ≠ 𝑌}.   Also, let 𝑍𝑡 = 𝐵𝜏1+𝑡, 𝑡 ≥ 0.  By 

the strong Markov property  𝑍𝑡 − 𝐵𝜏1  𝑡 ≥ 0, is a SBM which is independent of ℱ𝜏1 .   

  



Problem 5. Let {𝜀, 𝜀𝑘: 𝑘 = 1, 2, … } be i.i.d. sequence of random variables, with 

 𝑃(𝜀 = ±1) = 1/2.   

Let  𝑆𝑛 = ∑ 𝜀𝑘
𝑛
𝑘=1  , 𝑛 = 1, 2, … , 𝑆0 = 0  (so {𝑆𝑛} is a simple symmetric random walk.)   

Let {ℱ𝑛: 𝑛 = 0, 1, …  }  be the natural filtration of {𝑆𝑛}. 

Finally, let 𝜏 = min{𝑛: 𝑆𝑛 = 1}.   

a.  (i)   Prove that 𝜏  is a stopping time with respect to {ℱ𝑛}. 
 

(ii)   Let {𝐻𝑛: 𝑛 = 1, …  } be a bounded sequence of random variables so that 

 𝐻𝑛 ∈ ℱ𝑛−1, 𝑛 = 1, 2, … Prove that {∑ 𝐻𝑘𝜀𝑘
𝑛
𝑘=1 , ℱ𝑛 } is a martingale. 

  

b. (i)   Prove that {𝑆𝑛∧𝜏, ℱ𝑛 } is a martingale.  Do it by using part a(ii) with an appropriate 

choice of {𝐻𝑛}. 

  

(ii)   Prove that  𝑆𝑛∧𝜏  converges a.s. as 𝑛 → ∞, a.s.   
 

c. (i)   Identify the distribution of the limit of the sequence 𝑆𝑛∧𝜏  as 𝑛 → ∞. 

 

(ii)  Prove that {𝑆𝑛∧𝜏} isn’t uniformly integrable. 

 

  



Problem 6.  Let {𝜀𝑘}  be independent sequence of random variables, with  

 𝐸(𝜀𝑘) = 0 and  𝐸(𝜀𝑘
2) < ∞, 𝑘 = 1, 2, …   Let 𝑆𝑛 = ∑ 𝜀𝑘

𝑛
𝑘=1 , and let {ℱ𝑛}  be the natural 

filtration of {𝑆𝑛}, 𝑛 = 1, 2, …  Let  𝐴 = { max
1≤𝑛≤𝑚

| 𝑆𝑛| > 𝑥}, where 𝑥 > 0, and the integer 𝑚 ≥ 1  

are fixed.  Let 𝜏 = min{𝑛 ≤ 𝑚: |𝑆𝑛| > 𝑥 or 𝑛 = 𝑚}. 

a. Prove the following 

(i)   (𝑆𝑛
2 − 𝜎𝑛

2, ℱ𝑛)  is a martingale, where 𝜎𝑛
2 = 𝐸(𝑆𝑛

2). 

(ii)  𝐸 (𝑆𝜏
2 − 𝜎𝜏

2) = 0. 

b. Assume from now on that, in addition to the above, there exists a finite 𝐶 > 0 so that 

|𝜀𝑘| ≤ 𝐶, 𝑘 = 1, 2,…  .  Prove  

(i) 𝑆𝜏
2 ≤ (𝑥 + 𝐶)2 .    

Hint.  𝑆𝜏 = 𝑆𝜏−1 + 𝜀𝜏.  What can be said about 𝑆𝜏−1? 
 

(ii) On the event 𝐴𝑐 = { max
1≤𝑛≤𝑚

| 𝑆𝑛| ≤ 𝑥}  we have  𝑆𝜏
2 − 𝜎𝜏

2 ≤ 𝑥2 − 𝜎𝑚
2 . 

  

c.  Prove 

(i) 0 = 𝐸 (𝑆𝜏
2 − 𝜎𝜏

2) ≤  (𝑥 + 𝐶)2𝑃(𝐴) + (𝑥2 − 𝜎𝑚
2 )𝑃(𝐴𝑐) 

 

(ii) 𝑃( max
1≤𝑛≤𝑚

| 𝑆𝑛| ≤ 𝑥) ≤ (𝑥 + 𝐶)
2/𝜎𝑚

2 .     

Hint for (ii).  Rearrange part (i) by replacing 𝑃(𝐴) by 1 − 𝑃(𝐴𝑐) , etc. 

 


