
Preliminary Exam: Probability

Time: 10:00am - 3:00pm, Thursday, August 20, 2020.

Your goal should be to demonstrate mastery of probability theory and maturity of

thought. Your arguments should be clear, careful, and complete.

The exam consists of six main problems, each with several steps designed to help you

in the overall solution.

Important: If you cannot solve a certain part of a problem, you still may

use its conclusion in a later part!

Please make sure to apply the following guidelines:

1. On each page you turn in, write your assigned code number and the page number

(n/m). Don’t write your name on any page.

2. Start each problem on a new page.
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1. Let Z1, . . . , Zn be independent and identically distributed (i.i.d.) random variables with

Z1 ∼ N(0, 1). Throughout this exam, N(0, 1) denotes a standard normal distribution. Let

Z =

∑n
k=1 Zk
n

.

(1a). Find the characteristic function of Z.

(1b). Find functions f : Rn → R and g : R→ R so that for all s1, . . . , sn, t ∈ R we have

E
(
ei[tZ+

∑n
k=1 sk(Zk−Z)]

)
= f(s1, . . . , sn) · g(t).

[Hint: You may find A1, . . . , An so that tZ +
∑n

k=1 sk(Zk −Z) =
∑n

k=1AkZk. Also,

to streamline notations, it may be helpful to use ns̄ =
∑n

k=1 sk.]

(1c). It follows from part (1b) that the random vector (Zk − Z, k = 1, . . . , n) and the

random variable Z are independent. You can use this fact without a proof.

Let X1, . . . , Xn be i.i.d. random variables with X1 ∼ N(µ, σ2) and let X =
∑n

k=1Xk

n .

(i). Prove that the random variables (Xk −X, k = 1, . . . , n) and the random variable X

are independent.

(ii). Let S2 =
∑n

k=1(Xk−X)2

n−1 . Prove that S2 and X are independent.
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2. (2a). It is proved in the textbook that if Y is a random variable with density

fY (y) =
1

2
e−|y|, y ∈ R,

then its characteristic function is given by ϕY (t) = 1
1+t2

, t ∈ R.

(i). Prove that
∫
R |ϕY (t)|dt <∞.

(ii). Quote the inversion formula for an integrable characteristic function and use it to

calculate the density function of a random variable X whose characteristic function

is given by ϕX(t) = e−|t|, t ∈ R.

(2b). Let {X, Xn}n≥1 be a sequence of i.i.d. random variables and let Sn =
∑n

k=1Xk for

all n ≥ 1. Assume that the characteristic function of X is given by

ϕX(t) = e−|t|, t ∈ R.

Prove that, for every n ≥ 1, the characteristic functions of Sn
n and X are identical.

(2c). We continue with the notations of part (2b). Let ϕ Sn√
n

(t) be the characteristic func-

tion of Sn√
n

.

(i). Calculate lim
n→∞

ϕ Sn√
n

(t) for all t ∈ R. Is the limit a continuous function in t ∈ R?

Is the limit a characteristic function?

(ii). Does Sn√
n

converge in distribution?
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3. Let {Xn}n≥1 be a sequence of independent random variables with

P(Xn = 2) =
1

n
, P(Xn = −1) = 1− 1

n
.

(3a) Show that the variance Var(Sn) of Sn =
∑n

m=1Xm satisfies

lim
n→∞

Var(Sn)

9 lnn
= 1.

[Hint: You may use the fact that
∣∣∑n

m=1
1
m − lnn

∣∣ ≤ 1 for all n ≥ 1.]

(3b). For any n ≥ 2 and 1 ≤ m ≤ n, define

Xm,n =
Xm − E(Xm)

3
√

lnn
.

Prove that as n→∞,
n∑

m=1

Xm,n =⇒ N(0, 1).

(3c). Prove that as n→∞,
Sn + n− 3 lnn

3
√

lnn
=⇒ N(0, 1).
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4. Let {Sn, n ≥ 0} be a simple random walk on Z starting at 0. Namely, S0 = 0 and

Sn = X1 + · · ·+Xn, n ≥ 1,

where {Xn}n≥1 are i.i.d. with P(X1 = 1) = P(X1 = −1) = 1/2.

(4a). Compute P(Sn = 2).

(4b). Show that
∑∞

n=1 P(Sn = 2) =∞.

[Hint: You may use Stirling’s formula n! ∼ e−nnn
√

2πn as n→∞.]

(4c). Let N be the first time that {Sn, n ≥ 0} hits 1:

N = inf{n ≥ 1 : Sn = 1}.

Compute P(SN+n = 3).

(4d). For any n ≥ 0, let Fn = σ(Sk, 0 ≤ k ≤ n) be the σ-algebra generated by (Sk, 0 ≤
k ≤ n). Find a sequence of constants {an}n≥0 such that {S2

n−an}n≥1 is a martingale

with respect to {Fn}n≥0.
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5. Let {ξ(n)i }i,n≥1 be a sequence of i.i.d. non-negative integer-valued random variables.

The corresponding Galton-Watson process {Zn}n≥0 is defined by Z0 = 1 and

Zn+1 =


Zn∑
i=1

ξ
(n+1)
i , if Zn > 0;

0, if Zn = 0.

Let µ = E(ξ
(1)
1 ) and Xn = Zn

µn for all n ≥ 0. Then {Xn}n≥0 is a martingale with respect

to the filtration {Fn}n≥0, where F0 = {∅,Ω} and Fn = σ(ξ
(m)
i : 1 ≤ m ≤ n, i ≥ 1) for all

n ≥ 1. It is known that {Xn}n≥0 converges almost surely.

We assume σ2 = Var(ξ
(1)
1 ) < ∞. This implies E(X2

n) < ∞ for all n ≥ 1. You can use

this fact without a proof.

(5a). Write Xn = Xn−1 + (Xn −Xn−1) and prove

E
(
X2
n|Fn−1

)
= X2

n−1 + E
[
(Xn −Xn−1)

2|Fn−1
]

= X2
n−1 + µ−2nE

[
(Zn − µZn−1)2|Fn−1

]
.

(5b). Show that E
[
(Zn − µZn−1)2|Fn−1

]
= Zn−1σ

2.

(5c). Show that for all integers n ≥ 1, we have

E(X2
n) = 1 + σ2

n+1∑
j=2

µ−j .

(5d). Assume µ > 1. Show that {Xn}n≥0 converges in L2(P).

(5e). Assume µ > 1. Show that {Xn}n≥0 is uniformly integrable and converges in L1(P).
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6. Let {B(t), t ≥ 0} be a real-valued Brownian motion starting from 0 and let T > 0 be a

fixed constant. For any partition Π of [0, T ], where

Π =
{

(t0, t1, . . . , tm) : 0 = t0 < t1 < · · · < tm−1 < tm = T
}
,

we define ∆(Π) = max
1≤i≤m

|ti − ti−1| and

Q(Π) =

m∑
i=1

|B(ti)−B(ti−1)|2.

(6a). Compute E
[
Q(Π)

]
and E

[
(Q(Π)− T )2

]
.

(6b). Let {Πn, n ≥ 1} be a sequence of partitions of [0, T ], where

Πn =
{

(tn0 , t
n
1 , . . . , t

n
m) : 0 = tn0 < tn1 < · · · < tnm−1 < tnm = T

}
,

such that lim
n→∞

∆(Πn) = 0. Prove lim
n→∞

E
[
(Q(Πn)− T )2

]
= 0.

(6c). Assume lim sup
n→∞

n2∆(Πn) <∞. Prove lim
n→∞

Q(Πn) = T almost surely.

(6d). For each partition Πn, consider the variation

V (Πn) =

m∑
i=1

|B(tni )−B(tni−1)|.

Assume that lim
n→∞

∆(Πn) = 0. Prove that if lim
n→∞

Q(Πn) = T almost surely then

lim
n→∞

V (Πn) =∞ almost surely.
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