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Two fundamental problems in probability theory and statistical anal-

ysis are typical behaviors such as expectations, laws of large num-

bers, central limit theorems and approximated sampling distribu-

tions, and rare events such as large deviations, significant level and

power. Small value probability studies the probability of the rare

events that positive random variables take smaller values. The as-

sociated typical behavior deals with the expectation of the minimum

of a family of positive random variables. We will provide an overview

on current and emerging opportunities in the area.
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Small value (deviation) probability studies the asymptotic rate of

approaching zero for rare events that positive random variables take

smaller values. To be more precise, let Yn be a sequence of non-

negative random variables and suppose that some or all of the prob-

abilities

P (Yn ≤ εn) , P (Yn ≤ C) , P (Yn ≤ (1− δ)EYn)

tend to zero as n → ∞, for εn → 0, some constant C > 0 and

0 < δ ≤ 1. Of course, they are all special cases of P (Yn ≤ hn) → 0

for some function hn ≥ 0, but examples and applications given later

show the benefits of the separated formulations.

What is often an important and interesting problem is the determi-

nation of just how “rare” the event {Yn ≤ hn} is, that is, the study

of the small value (deviation) probabilities of Yn associated with the

sequence hn.

If εn = ε and Yn = ‖X‖, the norm of a random element X on a sepa-

rable Banach space, then we are in the setting of small ball/deviation

probabilities.
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Deviations: Large vs Small

• Both are estimates of rare events and depend on one’s point of

view in certain problems.

• Large deviations deal with a class of sets rather than special sets.

And results for special sets may not hold in general.

• Similar techniques can be used, such as exponential Chebychev’s

inequality, change of measure argument, isoperimetric inequalities,

concentration of measure, etc.

• Second order behavior of certain large deviation estimates depends

on small deviation type estimates.

• General theory for small deviations has been developed for Gaus-

sian processes and measures.
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• Some technical difficulties for small deviations: Let X and Y be
two positive r.v’s (not necessarily ind.). Then

P (X + Y > t) ≥ max(P (X > t) ,P (Y > t))

P (X + Y > t) ≤ P (X > δt) + P (Y > (1− δ)t)
but

?? ≤ P (X + Y ≤ ε) ≤ min(P (X ≤ ε) ,P (Y ≤ ε))

• Moment estimates an ≤ EXn ≤ bn can be used for

E eλX =
∑
n=0

λn

n!
EXn

but E exp{−λX} is harder to estimate.

• Exponential Tauberian theorem: Let V be a positive random vari-
able. Then for α > 0

log P (V ≤ ε) ∼ −CV ε−α as ε→ 0+

if and only if

log E exp(−λV )

∼ −(1 + α)α−α/(1+α)C
1/(1+α)
V λα/(1+α)

as λ→∞.
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Ex: Let Xi, i ≥ 1, be i.i.d. random variables with EXi = 0 and

EX2
i = 1, E exp(t0|X1|) <∞ for t0 > 0, and Sn =

∑n
i=1Xi. Then as

n→∞ and xn →∞ with xn = o(
√
n)

log P
(

1
√
n

max
1≤i≤n

|Si| ≥ xn
)
∼ −

1

2
x2
n

and as n→∞ and εn → 0,
√
nεn →∞

log P
(

1
√
n

max
1≤i≤n

|Si| ≤ εn
)
∼ −

π2

8
ε−2
n .

•Open: Find

log P
(

max
1≤i≤n

|Si| ≤ C
)
∼ −??n.

Note that ?? 6= π2/8 and see Li and Zinn (2009+) for more details.
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Ex: Let Lµ(n) be the length of the longest increasing subsequence

(or records) in i.i.d sample {(Xi, Yi)}ni=1 with law µ. Then

lim
n→∞

Lµ(n)
√
n

= 2Jµ.

The upper tail is known and for c > 0

lim
n→∞

1
√
n

log P
(
Lµ(n) > (2Jµ + c)

√
n
)

= −Uµ(c).

The lower tail is unknown in general, but for 0 < c < 2Jµ

log P
(
Lµ(n) < (2Jµ − c)

√
n
)
≈ −n.

See Deuschel and Zeitouni (1999), Aldous and Diaconis (1999),

Okounkov (2000), and Li (2009+) for Gaussians.

•Open: Find

lim
n→∞

1

n
log P

(
Lµ(n) < (2Jµ − c)

√
n
)
.
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Ex: For one-dim Brownian motion B(t) under the sup-norm, we
have by scaling

P
(

sup
0≤t≤1

|B(t)| ≤ ε
)

= P
(

sup
0≤t≤T

|B(t)| ≤ 1

)
= P (τ2 ≥ T )

∼ −
π2

8
· T ∼ −

π2

8

1

ε2

as ε→ 0 and T = ε−2 →∞. Here τ2 = inf {s : |B(s)| ≥ 1} is the first
two-sided exit (or passage) time.

Ex: (One sided exit time)

P
(

sup
0≤t≤1

B(t) ≤ ε
)

= P
(

sup
0≤t≤T

B(t) ≤ 1

)
= P (τ1 > T )

= P (|B(T )| ≤ 1) ∼ (2/π)1/2T−1/2 = (2/π)1/2ε

where τ1 = inf {s : B(s) = 1} is the one-sided exit time.

• For Gaussian process X(t) with X(0) = 0, there are very few cases
the behavior

P( sup
0≤t≤1

X(t) ≤ ε), ε→ 0+

is known.
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Let X = (Xt)t∈T be a real valued Gaussian process indexed by T .

The large deviation under the sup-norm:

P
(

sup
t∈T

(Xt −Xt0) ≥ λ
)

as λ→∞.

The small ball (deviation) probability:

log P (‖X‖ ≤ ε) as ε→ 0

for any norm ‖·‖.
The small ball probability under the sup-norm:

P
(

sup
t∈T
|Xt −Xt0| ≤ x

)
as x→ 0

The lower tail probability:

P
(

sup
t∈T

(Xt −Xt0) ≤ x
)

as x→ 0

with t0 ∈ T fixed.

• The last two types of probability can also be viewed as the first

exit time problems if the process has scaling property.
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The Lower Tail Probability

Let X = (Xt)t∈T be a real valued Gaussian process indexed by T .
The lower tail probability studies

P
(

sup
t∈T

(Xt −Xt0) ≤ ε
)

as ε→ 0

with t0 ∈ T fixed. Some general upper and lower bounds are given
in Li and Shao (2004). In particular, for d-dimensional Brownian
sheet W (t), t ∈ Rd,

log P

 sup
t∈[0,1]d

W (t) ≤ ε

 ≈ − logd
1

ε
.

Many open problems remain and new techniques are needed.
• Known cases: Brownian motion(BM), Brownian bridge, OU pro-
cess, integrated BM, fractional BM, and a few more.
• The rate for the integrated fractional Brownian motion is related
to the singularity of Burger’s equation, See Sinai (1992), Molchan
(1999, 2001, 2004, 2006), Li and Shao (2005).
• The rate for the m-th integrated Brownian motion is related to
the positivity exponent of random polynomials, see Li and Shao
(2009+).
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Precise Links with Metric Entropy

As it was established in Kuelbs and Li (1993) and completed Li and
Linde (1999), the behavior of

log P (‖X‖ ≤ ε)
for Gaussian random element X is determined up to a constant by
the metric entropy of the unit ball of the reproducing kernel Hilbert
space associated with X, and vice versa.

• The Links can be formulated for entropy numbers of compact
operator from Banach space to Hilbert space.

• This is a fundamental connection that has been used to solve
important questions on both directions.

Open: Small ball or entropy number for tensors.

Open: Probabilistic understanding for small balls of the tensored
Gaussian.

Open: Similar connections for other measures such as stable. One
direction is given in Li and Linde (2003).
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Exit Time, Principal Eigenvalue, Heat Equation

Let D be a smooth open (connected) domain in Rd and τD be the

first exit time of a diffusion with generator A. For bounded domain

D and strong elliptic operator A, by Feynman-Kac formula,

lim
t→∞

t−1 log P (τD > t) = −λ1(D)

where λ1(D) > 0 is the principal eigenvalue of −A in D with Dirichlet

boundary condition.

Ex: Brownian motion in Rd with A = ∆/2. Let v(x, t) = Px{τD ≥ t}

Then v solves

{
∂v
∂t = 1

2∆v inD
v(x,0) = 1 x ∈ D.

So this type of results can be

viewed as long time behavior of log v(x, t), which satisfies a nonlinear

evolution equation.

• Unbounded domain D and/or degenerated differential operator A.

Li (2003), van den Berg (2004), Kuelbs and Li (2004), Bañuelos

and DeBlassie (2006).
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Sequential Analysis

Several stopping times which arise from problems in approximations
for sequential point and interval estimation may be written in the
form

tc = inf{n ≥ m : Sn < cnαL(n)},

where Sn = X1 + · · ·+ Xn, X1, X2, · · · are i.i.d. positive r.v’s with
EX2

1 <∞, L(n) = 1 +O(n−1), α > 1, m ≥ 1 and c > 0.
• The probability of stopped early

P(tc ≤ (1− δ)E tc) ∼ Km,δ · c(m−1)/2α, c→ 0,

which is strongly influenced by the initial sample size m.
• The uniform integrability of |t∗c|r in c is determined by the behavior
of

P(X1 ≤ x) or P(Sm ≤ x), x→ 0

where

t∗c =
tc − E tc√

Var(tc)
⇒ N(0,2α2).

See Robbins (1959), Chow and Robbins (1965), Starr and Woodroofe
(1968, 1972), Woodroofe (1977, 1982), Lai and Siegmund (1977),
Yu (1981), Takada (1992), etc.
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An Edgeworth Curiosum

Let X1 and X2 be i.i.d samples with density fk(x− θ), where

fk(x) = 2−1(k − 1)(1 + |x|)−k, k > 1.

Then for ε > 0 small,

P(|
X1 +X2

2
− θ| ≤ ε) ≤ P(|X1 − θ| ≤ ε),

i.e. the sample mean provides a bigger error than a single observa-

tion under the criterion judged by P(|θ̂ − θ| ≤ ε) for a given ε > 0

small.

•For a detailed study, see S. Stigler (1980), An Edgeworth curiosum.

Ann. Stat, 8, 931–934.

•For any i.i.d samples X1 and X2,

P(|X1 +X2| ≤ x) ≤ 2 · P(|X1 −X2| ≤ x), x > 0,

and the constant 2 is the best possible.
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Hamiltonian and Partition Function

One of the basic quantity in various physical models is the associ-

ated Hamiltonian (energy function) H which is a nonnegative func-

tion. The asymptotic behavior of the partition function (normaliz-

ing constant) E e−λH for λ > 0 is of great interests and it is directly

connected with the small value behavior P(H ≤ ε) for ε > 0 under

appropriate scaling.

In the one-dim Edwards model a Brownian path of length t receives a

penalty e−βHt where Ht is the self-intersection local time of the path

and β ∈ (0,∞) is a parameter called the strength of self-repellence.

In fact

Ht =
∫ t

0

∫ t
0
δ(Wu −Wv)dudv =

∫ ∞
−∞

L2(t, x)dx
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• Chen and Li (2009+): For the one-dim Edwards model,

lim
ε→0

ε2/(p+1) log P{
∫ ∞
−∞

Lp(1, x)dx ≤ ε} = −cp

for some unknown constant cp > 0. Bounds on cp can be given by

using Gaussian techniques.

• Klenke and Morters (2005): Let lm,n(B(0,1)) be the (projected)

intersection local time of m vs n independent Brownian paths in Rd

for d = 2,3 inside the unit ball B(0,1) ⊂ Rd. Then

lim
ε→0

log P(lm,n(B(0,1)) ≤ ε)
− log ε

= −
ξd(m,n)

4− d
where ξd(m,n) are called the non-intersection exponents. The values

ξ2(m,n) are found by Lawler, Schramm and Werner based on SLE.

Much less is known in R3.
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SVP for the Martingale Limit of a Galton-Watson Tree

Consider the Galton-Watson branching process (Zn)n≥0 with off-

spring distribution (pk)k≥0 starting with Z0 = 1. In any subsequent

generation individuals independently produce a random number of

offspring according to P(N = k) = pk. Suppose µ = EN > 1 and

EN logN < ∞. Then by Kesten-Stigum theorem, the martingale

limit (a.s and in L1)

W = lim
n→∞

Zn

µn

exists and is nontrivial almost surely with EW = 1. WOLG, assume

p0 = 0 and pk < 1 for all k ≥ 1. Then in the case p1 > 0, there exist

constants 0 < c < C <∞ such that for all 0 < ε < 1

cετ ≤ P(W ≤ ε) ≤ Cετ , τ = − log p1/ logµ

and in the case p1 = 0, there exist constants 0 < c < C < ∞ such

that for all 0 < ε < 1

cε−β/(1−β) ≤ − log P(W ≤ ε) ≤ Cε−β/(1−β).

with ν = min{k ≥ 2 : pk 6= 0} and β = log ν/ logµ < 1.

16



•These results are due to Dubuc (1971a,b) in the p1 > 0 case, and

up to a Tauberian theorem also in the p1 = 0 case, see Bingham

(1988). A probabilistic argument is given in Mörters and Ortgiese

(2008).

•Asymptotics for the survival probability in killed branching random

walk, Gantert, Hu and Shi (2009+)

•Similar results for variants of branching process, Chu, Li and Ren

(2010+).
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Smoothness of the Density via Malliavin Matrix

Lemma: Let M(ω) = (mij)n×n be a symmetric nonnegative definite

random matrix with moments of all order for mij. If for any p ≥ 2

sup
|v|=1

P(vTMv ≤ ε) = O(εp), as ε→ 0+,

Then det(M−1) = (detM)−1 ∈ Lp for all p > 0.

•In many applications of Malliavin calculus to the smoothness of the

density of the solutions of SPDEs, one needs to show the inverse of

the determinant of the Malliavin matrix has moments of all orders,

or equivalently, the determinant of the Malliavin matrix has negative

moments of all orders.

•In fact, the negative moments estimates

EV −p <∞ for any/all p > 0

is equivalent to the upper small value estimates

P(V ≤ ε) ≤ Cpεp for any/all p > 0, as ε→ 0.
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Correlation inequalities

The Gaussian correlation conjecture: For any two symmetric

convex sets A and B in a separable Banach space E and for any

centered Gaussian measure µ on E,

µ(A ∩B) ≥ µ(A)µ(B).

An equivalent formulation: If (X1, . . . , Xn) is a centered, Gaussian

random vector, then

P
(

max
1≤i≤n

|Xi| ≤ 1

)

≥ P
(

max
1≤i≤k

|Xi| ≤ 1

)
P
(

max
k+1≤i≤n

|Xi| ≤ 1

)
for each 1 ≤ k < n.

• Sidak inequality: The above holes for k = 1 or any slab B.
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The weaker Correlation inequality: For any 0 < λ < 1, any

symmetric, convex sets A and B,

µ(A ∩B)µ(λ2A+ (1− λ2)B) ≥ µ(λA)µ((1− λ2)1/2B).

In particular,

µ(A ∩B) ≥ µ(λA)µ((1− λ2)1/2B)

and

P(X ∈ A, Y ∈ B) ≥ P
(
X ∈ λA

)
P
(
Y ∈ (1− λ2)1/2B

)
for any centered joint Gaussian vectors X and Y .

The varying parameter λ plays a fundamental role in applications,

see Li (1999). It allows us to justify

µ(A ∩B) ≈ µ(A) if µ(A)� µ(B).

Note also that

µ(∩mi=1Ai) ≥
m∏
i=1

µ(λiAi)

for any λi ≥ 0 with
∑m
i=1 λ

2
i = 1.
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For the weaker correlation inequality established in Li (1999), here

is a very simple proof given in Li and Shao (2001). Let a = (1 −
λ2)1/2/λ, and (X∗, Y ∗) be an independent copy of (X,Y ). Then

X−aX∗ and Y +Y ∗/a are independent. Thus, by Anderson inequality

P(X ∈ A, Y ∈ B)

≥ P(X − aX∗ ∈ A, Y + Y ∗/a ∈ B)

= P(X − aX∗ ∈ A)P(Y + Y ∗/a ∈ B)

= P
(
X ∈ λA

)
P
(
Y ∈ (1− λ2)1/2B

)
.
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Consider the sums of two centered Gaussian random vectors X and

Y in a separable Banach space E with norm ‖·‖.
Thm:If X and Y are independent and

lim
ε→0

εγ log P (‖X‖ ≤ ε) = −CX ,

lim
ε→0

εγ log P (‖Y ‖ ≤ ε) = −CY

with 0 < γ <∞ and 0 ≤ CX , CY ≤ ∞. Then

lim sup
ε→0

εγ log P (‖X + Y ‖ ≤ ε) ≤ −max(CX , CY )

lim inf
ε→0

εγ log P (‖X + Y ‖ ≤ ε) ≥ −
(
C

1/(1+γ)
X + C

1/(1+γ)
Y

)1+γ
.

Thm: If two joint Gaussian random vectors X and Y , not necessarily

independent, satisfy

lim
ε→0

εγ log P (‖X‖ ≤ ε) = −CX ,

lim
ε→0

εγ log P (‖Y ‖ ≤ ε) = 0

with 0 < γ <∞, 0 < CX <∞. Then

lim
ε→0

εγ log P (‖X + Y ‖ ≤ ε) = −CX .
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Typical Small Value Behavior

To make precise the meaning of typical behaviors that positive ran-
dom variables take smaller values, consider a family of non-negative
random variables {Yt, t ∈ T} with index set T . We are interested in
evaluation E inft∈T Yt or its asymptotic behavior as the size of the
index set T goes to infinity.

Ex: The first passage percolation indexed by paths.

Ex: Random assignment type problems indexed by permutations.

Conj: (Li and Shao) For any centered Gaussian r.v’s (Xi)
n
i=1,

E min
1≤i≤n

|Xi| ≥ E min
1≤i≤n

|X̂i|

where X̂i are ind. centered Gaussian with E X̂2
i = EX2

i .

Yes for n = 2,3.

Gordon, Litvak, Schutt and Werner (2006):

2E min
1≤i≤n

|Xi| ≥ E min
1≤i≤n

|X̂i|
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Expected Lengths of Minimum Spanning Tree (MST)

For a simple, finite, and connected graph G with vertex set V (G)

and edge set E(G), we assign a non-negative i.i.d random length ξe

with distribution F to each edge e ∈ E(G). The total length of the

MST is denoted by

LFMST (G) = min
T

∑
e∈T

ξe =
∑

e∈MST (G)

ξe.

In particular, we use the notation E[LuMST (G)] for U(0,1) and E[LeMST (G)]

for exp(1).

Frieze (1985): For complete graph Kn on n vertices,

lim
n→∞E[LeMST (Kn)] = lim

n→∞E[LuMST (Kn)] = ζ(3) =
∞∑
k=1

k−3 = 1.202...

See related results in Steele (1987), Frieze and McDiarmid (1989),

Janson (1995). Pennose (1998), Beveridge, Frieze McDiarmid (1998),

Frieze, Ruszink and Thoma (2000), Fill and Steele (2004), Gamarnik

(2005).
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Exact Formula

Steele (2002):

E[LuMST (G)] =
∫ 1

0

(1− t)
t

Tx(G; 1/t,1/(1− t))

T (G; 1/t,1/(1− t))
dt,

where T (G : x, y) is the Tutte polynomial of G and Tx(G;x, y) is the
partial derivative of T (G;x, y) with respect to x.

Li and X. Zhang (2009):

E[LFMST (G)] =
∫ ∞

0

1− F (t)

F (t)

Tx(G;x, y)

T (G;x, y)
dt,

where x = 1/F (t), y = 1/(1− F (t)). In particular,

E[LeMST (G)] =
∫ 1

0

1

t

Tx(G; 1/t,1/(1− t))

T (G; 1/t,1/(1− t))
dt,

and for any connected graph G,

E[LuMST (G)] < E[LeMST (G)].

Li and X. Zhang (2009): For complete graph Kn,

0 < E[LeMST (Kn)]− E[LuMST (Kn)] =
ζ(3)

n
+O

(
n−2 log2 n

)
.
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Combinatorial Optimization

The TSP (travelling salesman problem, i.e. find the shortest route

through a set of points) is the paradigm problem in this area.

• Let Ln = minσ
∑n
i=1 |Xσ(i)−Xσ(i+1)| be the shortest tour of n i.i.d

uniform points {X1, · · · , Xn} ⊂ [0,1]d. Then ELn/n(d−1)/d → β(d).

Find “good” estimates on β(d).

• Does the Central Limit Theorem hold, i.e. does the length of the

optimal tour have a Normal distribution as n tends to infinity?

• Can one prove anything about the geometric structure of the

optimal tour?

• Two-sample matching: There is 0 < c0 < c1 <∞ such that

c0 ≤
EMn√
n logn

≤ c1, c0 ≤
EM∗n

n−1/2(logn)3/4
≤ c1

where

Mn = min
σ

n∑
i=1

|Xi − Yσ(i)|, M∗n = min
σ

max
1≤i≤n

|Xi − Yσ(i)|

and {Xi} and {Yi} are i.i.d uniform samples on [0,1]2. Show the

limiting constants exists.
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Small Value Theory

We believe a theory of small value phenomenon should be developed

and centered on:

• systematically studies of the existing techniques and applications

• applications of the existing methods to a variety of fields

• new techniques and problems motivated by current interests of

advancing knowledge
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Applications of small deviation probabilities

• Chung’s law of the iterated logarithm

• Lower limits for empirical processes

• Rates of convergence of Strassen’s FLIL

• Rates of convergence of Chung type FLIL

• A Wichura type functional LIL

• Fractal Geometry for Gaussian random fields

• Metric entropy estimates

• Capacity in Wiener space

• Natural Rates of escape for infinite dimensional Brownian motions

• Asymptotic evaluation of Laplace transform for large time

• Onsager-Machlup functionals

• Random fractal laws of the iterated logarithm

All are discussed in details in the survey paper of Li and Shao (2001).
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Applications not included in the survey:

• Volume of Wiener sausage and fractional Brownian sausage

• Classical and average Kolmogorov widths

• Hypercontractivity and comparison of moments of iterated max-

ima and minima

• Cascade relations for intersection exponents of planar Brownian

motion

• Estimates of principle eigenvalue of (fractional) Laplacian

• Exit time of Brownian motion from unbounded domain, principal

eigenvalue, heat equation

• Entropy and quantization of Gaussian measure

• Regularity of density for functionals of Gaussian processes

• Decaying turbulent transport

• Random sum of vectors

• Cube slicing

• Dvoretzky theorem in geometric functional analysis, negative mo-

ments of a norm

• Hamiltonian and Partition Function

• The Wiener-Hopf Equation
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• Longest increasing subsequences, longest common increasing sub-

sequences

• Determinant of random matrix

• Littlewood and Offord type problems

• Existence in random graphs.

• Combinatorial discrepancy.

• Hadamard conjecture.

• Most visit sites via isomorphism theorems

• Singularity of Burgers equation

• Galton-Watson tree and DNA testing

• Gaussian free fields

• Etc.
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