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Abstract

Zolotarev proved a duality result that relates stable densities with
different indices. In this talk, we show how Zolotarev duality
leads to some interesting results on fractional diffusion. Frac-
tional diffusion equations employ fractional derivatives in place
of the usual integer order derivatives. They govern scaling lim-
its of random walk models, with power law jumps leading to
fractional derivatives in space, and power law waiting times be-
tween the jumps leading to fractional derivatives in time. The
limit process is a stable Lévy motion that models the jumps,
subordinated to an inverse stable process that models the wait-
ing times. Using duality, we relate the density of a spectrally
negative stable process with index 1 < o < 2 to the density of
the hitting time of a stable subordinator with index 1/«, and

thereby unify some recent results in the literature. These results
provide a concrete interpretation of Zolotarev duality in terms
of the fractional diffusion model. They also illuminate a current
controversy in hydrology, regarding the appropriate use of space
and timfeI fractional derivatives to model contaminant transport
in river flows.
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Fractional derivatives: An old idea gets new life

Fractional derivatives Do f(x) for any a > 0 were invented by
Leibnitz soon after the more familiar integer derivatives.

Some derivative formulas extended to the fractional case:
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Fractional derivatives and transforms

If the Laplace transform of f(t) is defined for 0 < o < 1 by

(s) = /OOO e~ F(t)dt

then Da f(t) has Laplace transform s®f(s) — s*~1£(0).

If the Fourier transform of f(x) is defined for kK € R by
fy =

— 00

@,

e T £ (1) dx

then D f(z) has Fourier transform (ik)®f(k).

Here (ik)® = |k|%sign(k)ei*m/2.



Probability and transforms

If the random variable X has density f(z) so that

Pla< X <b) = /abf(a:)d:c

then f(x) has Fourier transform

foy ="

—O0

(1 — ikx + %(ikx)Q + - ) f(z)dz

— 1 _ ik _le
= WHL S po

where the pth moment

pp = /_O:O 2P f(x)dx



Central limit theorem
If uy =0 and pup =2 then f(k) =1 —k?+---

ThellD sum S, = X1+ -+ X, has FT f(k)™ and the normalized
sum Sp/+/n has FT

Flk/vm)" = (1= (k/v/n)? +---)"

2 n
n

2
— ek =g(k) as n — oo.

Inverting the Fourier transform reveals a Gaussian density
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Brownian motion

If X,, represents a particle jump at timen then §,, = X1+ - -4+ Xp,
is the location of the particle at time n. Expanding the time
scale by a factor of ¢ > 0 and taking limits as ¢ — oo shows that
¢ 1/281,q = Ay since

2 [ct]
e 1/2p)et) — (1 S )

— e R = 3k, t)
for all ¢t > 0. Inverting the FT shows that the density of the
limiting Brownian motion process A; is Gaussian

c(x,t) = %ﬂ't g%/ (41),



Simple random walk simulation
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Longer time scale
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Scaling limit: Brownian motion

20
15

10

mw
i

Yl

200

400

t

" 600

800

1000




The diffusion equation

Taking Fourier transforms in the classical diffusion equation

Oc(x,t) 02c(x,t)
ot  0x?

yields
de(k,t)
dt

= (ik)%e(k,t) = —k2e(k, t)
whose solution
ik, t) = ekt

inverts to the same limit density for the Brownian motion A;.

For a cloud of diffusing particles c(z,t) is the particle density.



Classical diffusion profile
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Brownian motion Gaussian (Normal) density at time t = 1,4,9
showing square root spreading rate and fast tail decay.



Heavy (power law) tails

If P(X >z)~z®then f(z) ~ az~®* ! and some moments

o= [ aFf(@)de

do not exist. If 1 <a <2 and pu1 = 0 then a typical X has FT
flk) =1+ @)+ -
and n~l/e(X{ 4+ ... 4+ X;,) has FT
FnmHemyr = (14 (v ik - )"
— (1_|_ (ik)“ _|_>n

n

s )Y = g(k) as n — oo.
The inverse Fourier transform g(x) is called a stable density.



Lévy motion

If S, = X1+ - ---+ X, is particle location at time n then the
scaling limit c—l/O‘S[ct] = A since

3 AN’ [ct]
FleYap)let] = <1 + (k) iy )

C
s MR = Bk, 1),

The limit process A; is called a Lévy motion.



Heavy tail random walk simulation

2.5

1.5

0.5




Longer time scale
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Scaling limit: Stable Lévy motion
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Fractional diffusion equation

To solve the fractional diffusion equation

Oc(x,t)  0%(x,t)
ot  Ox™
take Fourier transforms to get

dé(k, t)
dt

= (ik)“c(k,t)
and solve to obtain
ok, t) = et(tk)®

so the density of the Lévy motion solves this fractional PDE.

In this case ¢(z,t) falls off like z7 %1 as 2z — 0.



Fractional diffusion profile
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Stable a« = 1.5 Lévy motion density at time ¢t = 1,4,9 showing
super-diffusive spreading rate, skewness, and power law tail.



Continuous time random walks
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The CTRW is a random walk with jumps X, separated by ran-
dom waiting times J,. The random vectors (X, Jn) are i.i.d.



Heavy tail waiting times

If P(J>1t)~t P with 0 < 8 < 1 then the mean waiting time is
infinite. A typical J has LT

Fs)=1-s%+...
and n=YB(J; + -+ Jp) has LT

Fenm Byt = (1 - (nYBs)f .. )"

B n
n

e = g(s) as n — oo.

The inverse Fourier transform g(¢) is a stable density with index
0<B<1.



Waiting time process

If1lh, =Jy+ -+ Jn is the time of the nth particle jump, then
the scaling limit ¢=1/0T}, = Dy since

3 [ct]
Fe1/Bg)letl = (1 _ % 1. >

et = E(k, t).

The limit process Dy is called a Lévy stable subordinator.

The number of jumps by time ¢t > 0 is Ny = max{n >0 : T, <t}
and note that {7}, <t} = {N+ > n} (inverse processes)



CTRW scaling limits
Since (¢S, ¢ YPTq) = (Ay, Dy) a continuous mapping ar-
gument vields

(¢S (egg, P Niy) = (Ar, By)

where the inverse subordinator E; = inf{r > 0 : D, > t}.

Another continuous mapping argument leads to

C_B/aSN[ct] — (Cﬂ)—l/as(cﬁ : C_ﬁN[ct]) = Ap,



Fractional governing equations

A simple conditioning argument shows that the limit process Ag,
has a density

m(x,t) = /c(m,u)h(u,t) du
where c¢(x,u) is the density of A, and h(w,t) is the density of E;.

The density solves a space-time fractional diffusion equation

OPm(z,t) _0%m(x,t)
otP o ox®
It is easy to check that this is equivalent to:

Oc(xz,u)  0%(x,t) And Oh(u,t) _85h(u,t)
ou O™ ou otP




Hitting time density

The time process is self-similar with D; = ¢t1/6D;. Then

P(Ey < u) = P(Dy > t)
= P(ul/ﬁDl > t)
= P(Dy > tu=*/P)
Take derivatives to see that

h(u,t) = %u_l_l/ﬁg(tu_l/ﬁ)

where ¢g(t) is the density of D;.



Zolotarev duality

A negatively skewed stable Sy = —A; has density P(x,t) = p(—=x,t).
The stable series representation for 1 < o < 2 gives

_PCmt)::}'i%(—J)k+1r(1_Fk/a)fJVka_lsH1(EE>.
T k=1

k! o

Substituting the hitting time density formula into the stable se-
ries representation for 0 < 8 = (1/a) < 1 leads to

0@

_ 1 _ k1l (L +k/a) “kfa, k=1 (TR
M%w_4xwgi(1) Pk gn(a).

Hence h(x,t) = aP(x,t) for x > 0, or E} 2 S¢St > 0.

The process S; has negative jumps.



Consequences of Zolotarev duality

Oh(u,t) _ _85h(u, t)

Since we also have
ou otP
OP(u,t) _85P(u,t)
ou o otP
(8
Since OP(z,u) = 0% P(z,t) we also have
ou O(—x)“
Oh(z,u)  O0%(x,u)
ou  O(—z)?

Here d=%f(x)/d(—x)® has FT (—ik)*f(k).



Tracer test in an underground aquifer

Positively skewed stable density c¢(z,t) with o« = 1.1 gives a good
fit. The positive skewness reflects downstream jumps attributed
to high velocity channels.
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Tracer test in a Michigan river

Negatively skewed stable fit ¢t — c(z,t) with «

Grand River.
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A controversy in hydrology
Negative skewness comes from negative jumps in the CTRW.
Particles cannot jump far upstream!
Duality equates negative skewness to power law waiting times.

Time-fractional model equivalent to negative space-fractional.



Open problem: Markovian subordinator

Is there a stable-like Markov process Z; with the same probability
density functions as E;7?

o=1.1
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Open problem: Fractal properties

LLévy particle traces are random fractals with dimension «. Frac-
tal properties of CTRW Ilimits are unexplored.

Levy motion path
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Biological species growth and dispersion

Fractional derivatives model fast spreading via long movements.
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Compare a = 2 (top) to a = 1.7 (bottom).

ZOr- - j

10p

> OF

_10 L

I ——

-20 0 20 40 60 80 100

-20 0 20 40 60 80 100



Sound wave propogation

We use g = 2.5 for human fat tissue and g = 2.1 for liver tissue.
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LIFFE BTP bond futures Sept 1997 delivery
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Log returns and waiting times (sec) are dependent random vari-
ables. Long waiting times are associated with large returns.



General Electric stock October 1999
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Long waiting times and large returns appear asymptotically in-
dependent.



Tempered stables in finance

AMZN stock price changes fit a tempered power law model
P(X > ) ~ 27 96¢70-3% for 2 large

In(P(X> x))

15 2.0 25 3.0
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Derivatives of power laws

If both p and « are integers then

Dy [xP] = paP~!
Dy [2P] = p(p — 1)aP ™2

Dea [ZEp] = (> f!a)!xp_a

For p > 0 the Gamma function extends p! =T (p+ 1) via
>° 1
(p) :/O 2P~ e Tdx.
Use the property N(p+ 1) = pl(p) to get

rp+1) .
X .
Frp+1-—a)

Dq [2P] =



Fractional derivatives of power laws

If p > 0 then the Laplace transform

oo
LT {«P} = /O e FaPdr substitute y = sz

- /oC>O e Y(y/s)Pdy/s = s P (p+1).

Then
LT {Daz?} = s¥ P~ (p+ 1)
rp+1)

— o~ (p—a)-1 _ .
: B S PR

:LT{ rp+1) :ij_o‘}
rp—a+1)

and the uniqueness of the LT vyields

rp+1) .
X .
Frp—a+1)

Dq [2P] =




Difference quotients

The derivative Dy f(z) = limy,_gh A f(z) where

Af(z) = f(z) — f(z = h).
For positive integers a, Do f(z) = limy_gh *A%f(x) where
A f(x) = (f(z) — f(z — h)) = (f(z — h) — f(z — 2h))
= f(z) —2f(x — h) + f(z — 2h),
A3 f(z) = f(x) —3f(x —h) +3f(x —2h) — f(z — 3h)

(87

ACf(x) =Y (g) (—1)™f(x —mh). Here (;) — o

m=0




Fractional difference quotients

For a > 0 define Do f(x) = limy_gh *A%f(x) where

Atf(z) = ). (22) CORSemmh, (7?%) :m!rr(izajmlzrl)

m=0

Since f(xz—h) has FT e %" f(k), and using the Binomial formula

oo

(14+2)%= ) (%) 2" for any complex |z| <1
m=0

we see that A%f(x) has FT

m

> (“) (=)™ M F(k) = (1 — e” M) F (k)
m=0

and then the FT of h " *A%f(x) is

_ o—ikh

1
h=(ikh)®
(ikh) ( ikh

) f(k) — (ik)*f(k) as h — 0.



Random walk simulation code (Maple)

N:=1000:
J:=random[uniform[-1,1]1](N): # jump distribution
n:=’n’:T:=0:
for n from 1 to N do
T:=T+1;
> S[n]:=T;
> od:n:=’n’:
> plot (sum(J[n]*Heaviside(t-S[n]),n=1..1000),t=0..10);

vV V V V V

See http://www.maplesoft.on.ca/



Heavy tail random walk simulation code (Maple)

> lambda:=1:N:=1000:alpha:=1.5:C:=.1:
> P:=random[uniform[0,1]] (N):

> J:=random[uniform[0,1]] (N):

> n:="n’:T:=0:

> for n from 1 to N do

> T:=T+1;

> S[n] :=T;

> od:n:=’n’:
> plot (sum((2*floor (2*P[n])-1)*(C/J[n]) "~ (1/alpha)
*Heaviside(t-S[n]),n=1..1000),t=0..1000);

See http://www.maplesoft.on.ca/

Heavy tailed jumps U~1/@ where U ~ Uniform[0, 1].



