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Near infrared spectroscopy data

I Meat samples were analyzed using near-infrared spectroscopy,
which uses the near infrared region of the electromagnetic
spectrum from 850 nm to 1050 nm. Each sample contains
finely chopped pure meat with different moisture, fat and
protein contents.

I For each meat sample the contents of water, fat and protein
(in percent) were determined by analytic chemistry.

I See http://lib.stat.cmu.edu/datasets/tecator for
details.
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Near infrared spectroscopy data
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Near infrared spectroscopy data

Data description

I number of meat samples: 215

I functional variable: absorbances

I multivariate data: moisture, fat and protein contents
I data size

I absorbance: 100× 215
I moisture, fat and protein contents: 3× 215

Problem of interest

I estimating moisture, fat and protein contents based on
absorbance
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Basics of FDA

Let {X (t) : t ∈ T} be a stochastic process with

I µ(t) = E{X (t)} and R(s, t) = cov{X (s),X (t)}
I regularity conditions

Data

I independent realizations X1,X2, . . . ,Xn of X , (usually)
densely observed, or

I independent realizations (X1,Y1), (X2,Y2), . . . , (Xn,Yn)
where Y is a covariate

Inference

I distributional properties of X

I relationship between X and Y
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Hilbert space and covariance operator

Let H be a Hilbert space of functions on T and 〈·, ·〉 be the inner
product of H . Assume that X ∈H a.s.

We will focus on H = L2[a, b], the space of square-integrable
functions on [a, b], for some finite a, b, where

〈f , g〉 =

∫ b

a
f (t)g(t)dt.

The covariance operator is

ΓX : f 7→
∫ b

a
R(s, ·)f (s)ds, L2[a, b] 7→ L2[a, b].
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Eigen decomposition

Assume that E‖X‖2 <∞. It follows that

I ΓX =
∑∞

j=1 ωjψj ⊗ ψj ,
I ψ1, ψ2, . . . are orthonormal
I ψj ⊗ ψj is projection operator
I ω1 ≥ ω2 ≥ · · · ≥ 0 and

∑
i ωi <∞

I [Mercer’s Theorem]

R(s, t) =
∑∞

j=1 ωjψj(s)ψj(t)

I [Karhunen-Loève expansion]

X (t) = µ(t) +
∑∞

j=1 ω
1/2
j ηjψj(t)

I mean square expansion
I E(ηj) = 0, cov(ηj , ηk) = δj,k
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A general functional regression model

Consider the model

Y = f (〈β1,X 〉, · · · , 〈βK ,X 〉, ε),

where ε is unobserved and f ,K , β1, . . . , βK are unknown, and the
βk ’s are linearly independent.

Goals:

I estimate K

I estimate span(β1, . . . , βK ), effective dimension reduction
(EDR) space

I estimate (a version of) f
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Special cases

I linear regression model: Y = β0 + 〈β1,X 〉+ ε

Cardot, Ferraty and Sarda (2003), Cai and Hall (2006), Li and
Hsing (2007)

I generalized linear model: Y = f (〈β,X 〉, ε)

Müller and Stadtmüller (2005), Cardot and Sarda (2005)

I projection pursuit model: Y =
∑K

k=1 fk(〈βk ,X 〉) + ε

James and Silverman (2005)
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Inverse regression

Assumption L : For any β ∈H ,

E(〈β,X 〉|〈β1,X 〉, · · · , 〈βK ,X 〉) = c0 +
K∑

k=1

ck〈βk ,X 〉

for some constants c0, · · · , cK .

Assumption L holds for processes with elliptically contoured
distributions.

Theorem
[Li 1991, Ferré and Yao 2003] Under Assumption L ,

IR(t) := E(X (t)− µ(t)|Y ) ∈ span (ΓXβ1, · · · , ΓXβK ).
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Elliptically contoured distribution

I A process X has an elliptically contoured distribution if

Ee i〈f ,X−µ〉 = φ(〈f ,Tf 〉), f ∈H ,

for some self-adjoint operator T and characteristic function φ.

I In the infinite-dimensional case, X has an elliptically contoured

distribution if X
d
= µ+ RZ where Z is a zero-mean Gaussian

process and R is a nonnegative random variable independent
of Z . This can be proved based on a result by Schoenberg.

I Examples: Gaussian process, t-process
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Inverse regression

By the Ferré and Yao Theorem,

Im(ΓIR) ⊂ span (ΓXβ1, · · · , ΓXβK ).

If

Im(ΓIR) = span (ΓXβ1, · · · , ΓXβK ),

then the βk ’s can be estimated through the estimation of ΓX and
ΓIR .
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Inverse regression via principal components

I X = µ+
∑∞

j=1 ω
1/2
j ηjψj

I βk =
∑∞

j=1 ω
−1/2
j bkjψj

I

〈X − µ, βk〉 =
m∑

j=1

ηjbkj +
∞∑

j=m+1

ηjbkj

=: ηT
(m)bk,(m) + ζk,(m)
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Inverse regression based on principal components

The model Y = f (〈β1,X 〉, · · · , 〈βK ,X 〉, ε) can be written as

Y = f1(bT
1,(m)η(m) + ζ1,(m), · · · ,bT

K ,(m)η(m) + ζK ,(m), ε)

= f2(bT
1,(m)η(m), · · · ,bT

K ,(m)η(m), ε(m))

I The EDR space of this problem is span(b1,(m), · · · ,bK ,(m)).

I If b1,(m), · · · ,bK ,(m) are linearly independent then the
dimension of EDR space is K .

I Denote by ΓIR,(m) the inverse regression covariance matrix of
this problem; namely

ΓIR,(m) = cov(E(η(m)|Y )).
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Inverse regression based on principal components

I The “pseudo-error”, ε(m), is equal to

(ε, ζ1,(m), . . . , ζK ,(m)),

and is in general not independent of the η(m).

I We do not directly observe η(m).

I What’s the role of m?
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An example

I

X (t) =
∞∑

k=1

ω
1/2
2k−1η2k−1

√
2 cos(2kπt)

+
∞∑

k=1

ω
1/2
2k η2k

√
2 sin(2kπt), t ∈ [0, 1],

where ωk = 20(k + 1.5)−3 and ηk ’s ∼ N(0, 1).

I The principal components are

√
2 cos(2πt),

√
2 sin(2πt),

√
2 cos(4πt),

√
2 sin(4πt), . . .
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I

β1(t) = 0.9
√

2 cos(2πt) + 1.2
√

2 cos(4πt)− 0.5
√

2 cos(8πt)

+
∑
k>4

√
2

(2k − 1)3
cos(2kπt),

β2(t) = 0.45
√

2 cos(2πt) + 0.6
√

2 cos(4πt)− 3
√

2 sin(6πt)

+1.2
√

2 sin(8πt) +
∑
k>4

(−1)k
√

2

(2k)3
sin(2kπt).

I

Y = 〈β1,X 〉 × (2〈β2,X 〉+ 1) + ε =⇒ K = 2

I

b1,(m) = .9, 0, 1.2, 0, 0, 0, . . .

b2,(m) = .45, 0, .6, 0, 0, -3, . . .
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Sliced inverse regression

I Data: (X1,Y1), · · · , (Xn,Yn), fully observed.

I Estimate ΓX by Γ̂X , the sample covariance operator

I Compute ψ̂j and ω̂j by the eigen decomposition of Γ̂X

I Compute the PC scores η̂ij = ω̂
−1/2
j 〈ψ̂j ,Xi − X̄ 〉

I Let S1, · · · ,SH be a partition of the the range of Y . Let

nh =
n∑

i=1

I (Yi ∈ Sh), p̂h =
nh

n

η̄h,(m) =
1

nh

n∑
i=1

η̂i ,(m)I (Yi ∈ Sh)

Γ̂IR,(m) =
H∑

h=1

p̂hη̄h,(m)η̄
T
h,(m)

Tailen Hsing, University of Michigan Functional Sliced Inverse Regression



Sliced inverse regression

I Data: (X1,Y1), · · · , (Xn,Yn), fully observed.

I Estimate ΓX by Γ̂X , the sample covariance operator

I Compute ψ̂j and ω̂j by the eigen decomposition of Γ̂X

I Compute the PC scores η̂ij = ω̂
−1/2
j 〈ψ̂j ,Xi − X̄ 〉

I Let S1, · · · ,SH be a partition of the the range of Y . Let

nh =
n∑

i=1

I (Yi ∈ Sh), p̂h =
nh

n

η̄h,(m) =
1

nh

n∑
i=1

η̂i ,(m)I (Yi ∈ Sh)

Γ̂IR,(m) =
H∑

h=1

p̂hη̄h,(m)η̄
T
h,(m)

Tailen Hsing, University of Michigan Functional Sliced Inverse Regression



Sliced inverse regression

I Data: (X1,Y1), · · · , (Xn,Yn), fully observed.

I Estimate ΓX by Γ̂X , the sample covariance operator

I Compute ψ̂j and ω̂j by the eigen decomposition of Γ̂X

I Compute the PC scores η̂ij = ω̂
−1/2
j 〈ψ̂j ,Xi − X̄ 〉

I Let S1, · · · ,SH be a partition of the the range of Y . Let

nh =
n∑

i=1

I (Yi ∈ Sh), p̂h =
nh

n

η̄h,(m) =
1

nh

n∑
i=1

η̂i ,(m)I (Yi ∈ Sh)

Γ̂IR,(m) =
H∑

h=1

p̂hη̄h,(m)η̄
T
h,(m)

Tailen Hsing, University of Michigan Functional Sliced Inverse Regression



I Γ̂IR,(m) estimates ΓIR,(m).

I Let b̂1,(m), · · · , b̂K ,(m) be the leading eigenvectors of Γ̂IR,(m).

span(b̂1,(m), · · · , b̂K ,(m)) estimates span(b1,(m), · · · ,bK ,(m)).

I β̂k :=
∑m

j=1 ω̂
−1/2
j b̂kj ψ̂j

span(β̂1, · · · , β̂K ) estimates span(β1, · · · , βK ).

I If X is p-dimensional and m = p, this is exactly Li’s SIR.

I If X is infinite-dimensional, then in general m must increase
to ∞ with n in establishing consistency [Ferré and Yao 2003].

I Prerequisite: Need to know K .
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I Prerequisite: Need to know K .

Tailen Hsing, University of Michigan Functional Sliced Inverse Regression



I Γ̂IR,(m) estimates ΓIR,(m).

I Let b̂1,(m), · · · , b̂K ,(m) be the leading eigenvectors of Γ̂IR,(m).

span(b̂1,(m), · · · , b̂K ,(m)) estimates span(b1,(m), · · · ,bK ,(m)).

I β̂k :=
∑m

j=1 ω̂
−1/2
j b̂kj ψ̂j

span(β̂1, · · · , β̂K ) estimates span(β1, · · · , βK ).

I If X is p-dimensional and m = p, this is exactly Li’s SIR.

I If X is infinite-dimensional, then in general m must increase
to ∞ with n in establishing consistency [Ferré and Yao 2003].
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Deciding the dimension of EDR space

I To determine K , we sequentially test H0 : K ≤ K0 vs.
Ha : K > K0 for K0 = 0, 1, . . ., and conclude K = K0 the first
time we fail to reject H0.

I If K ≤ K0 then rank(ΓIR,(m)) ≤ K0 and so λj(ΓIR,(m)) = 0 for
j = K0 + 1, . . . ,m.

I Test statistic:

TK0,(m) = n
m∑

j=K0+1

λj(Γ̂IR,(m))

I Reject H0 for large values of TK0,(m).
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Define K(m) = rank(ΓIR,(m)).

Theorem
Assume that X is a Gaussian process. Assume that K ≤ K0, and
let H > K0 + 1 and m ≥ K0 + 1. Denote by X a random variable
having a χ2 distribution with (m − K0)(H − K0 − 1) degrees of
freedom. Recall that K(m) ≤ K ≤ K0.

I If K(m) = K0, then

TK0,(m)
d−→X as n→∞.

I If K(m) < K0, then TK0,(m) is asymptotically stochastically
bounded by X ; namely,

lim sup
n→∞

P(TK0,(m) > x) ≤ P(X > x) for all x .
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Example, continued

I

X (t) =
∞∑

k=1

ω
1/2
2k−1η2k−1

√
2 cos(2kπt)

+
∞∑

k=1

ω
1/2
2k η2k

√
2 sin(2kπt), t ∈ [0, 1],

where ωk = 20(k + 1.5)−3 and ηk ’s ∼ N(0, 1).

I The principal components are

√
2 cos(2πt),

√
2 sin(2πt),

√
2 cos(4πt),

√
2 sin(4πt), . . .
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I

β1(t) = 0.9
√

2 cos(2πt) + 1.2
√

2 cos(4πt)− 0.5
√

2 cos(8πt)

+
∑
k>4

√
2

(2k − 1)3
cos(2kπt),

β2(t) = 0.45
√

2 cos(2πt) + 0.6
√

2 cos(4πt)− 3
√

2 sin(6πt)

+1.2
√

2 sin(8πt) +
∑
k>4

(−1)k
√

2

(2k)3
sin(2kπt).

I

Y = 〈β1,X 〉 × (2〈β2,X 〉+ 1) + ε =⇒ K = 2

I

b1,(m) = .9, 0, 1.2, 0, 0, 0, . . .

b2,(m) = .45, 0, .6, 0, 0, -3, . . .
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So K(m) = 1 for m ≤ 5 and K(m) = 2 for m ≥ 6.

Let K0 = 2 and n = 500. Compute E(TK0,(m)) and E(T ∗K0,(m)).
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I This results suggests a χ2 test for testing H0 : K ≤ K0 versus
Ha : K > K0, which is an extension of a test in Li (1991) to
the functional data setting.

I Ideally, case (i) holds and the χ2 test has the correct size
asymptotically.

I For a number of reasons case (ii) may be true, for which the
χ2 test will be conservative.
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Proposition

Let Z be a p × q random matrix and we write Z = [ Z1 | Z2 ]
where Z1 and Z2 have sizes p × r and p × (q − r), respectively, for
some 0 < r < min(p, q). Assume that Z1 and Z2 are independent,
and Z2 contains i.i.d. Normal (0, 1) entries. Then∑p

j=r+1 λj(ZZT ) is stochastically bounded by χ2 with
(p − r)(q − r) degrees of freedom.

The case where Z is a matrix of i.i.d. Normal(0, 1) entries can be
viewed as the special case, r = 0. For that the bound is exact since∑p

j=1 λj(ZZT ) equals the sum of squares of all of the entries of Z

and is therefore distributed as χ2 with pq degrees of freedom.
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Proof

λ1(ZZT ) = max
‖v‖=1

(vT ZZTv)

p∑
j=r+1

λj(ZZT )

= min
Φ

{
tr(ΦT ZZT Φ), Φ is a p × (p − r)

matrix with orthonormal columns

}
Construct Φ by Gram-Schmidt procedure on the columns of Z .
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Adjusted test

I For the non-Gaussian case, we need to eliminate nuisance
parameters in the limit.

I Let P̂ be the matrix whose columns are the eigenvectors that
correspond to the m − K0 smallest eigenvalues of V̂ .

I τ̂h := 1
(m−K0)nh

tr
{

P̂P̂T
∑n

i=1(η̂i,(m) − η̄h,(m))×
(η̂i,(m) − η̄h,(m))

T I (Yi ∈ Sh)
}

I Λ̂ := diag(τ̂
1/2
1 , · · · , τ̂ 1/2

H )

I Ĵ := I − (p̂
1/2
1 , · · · , p̂1/2

H )T (p̂
1/2
1 , · · · , p̂1/2

H )

I Ĝ = diag{p̂1/2
1 , · · · , p̂1/2

H }
I M̂ = [η̄1,(m), · · · , η̄H,(m)]m×H

I Ŵ(m) = M̂ĜĴ Λ̂(Λ̂Ĵ Λ̂)−(M̂ĜĴ Λ̂(Λ̂Ĵ Λ̂)−)T
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Consider the following test statistic

T ∗K0,(m) = n
m∑

j=K0+1

λj(Ŵ(m)).

Theorem
Suppose X has an elliptically contoured distribution. Assume that
the true dimension K ≤ K0 and let H > K0 + 1 and m ≥ K0 + 1.

If K(m) = K0 then T ∗K0,(m)
d−→ χ2

(m−K0)(H−K0−1) as n→∞.
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Discussions

I In our example, we need m ≥ 6 to discover 2 directions.

I A practical way of choosing m is making sure that the first m
sample principal components explain most of the variation.

I

What about choosing m liberally?

When the sample size is fixed, the power of the tests will
decrease with m. Intuitively, when m is large the information
contained in the individual components becomes diluted. This
is also true for the “small n, large p” situation of multivariate
data.

I If m is chosen appropriately and the level α is fixed for all of
the tests, then the probability of correct identification of K
tends to 1− α as n→∞. The choice of H is less important.
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Adaptive Neyman test for the normal mean

Let X ∼ N(θ, In) be an n-dimensional normal random vector. We
wish to test H0 : θ = 0 versus Ha : θ 6= 0.

I The maximum likelihood ratio test is: reject H0 if ‖X‖2 is
large.

I The power of the test tends to the size of the test for any
alternative θ satisfying ‖θ‖ = o(n1/4).

I Fan (1996) and Fan and Lin (1998) considered the test
statistic

TN = max
1≤m≤N

1√
2m

m∑
j=1

(X 2
j − 1).
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“Adaptive Neyman” procedure

For N > K0 define

MN = max
K0+1≤m≤N

TK0,(m) − (m − K0)(H − K0 − 1)√
2(m − K0)(H − K0 − 1)

.

Theorem
Suppose X is a Gaussian process. Assume that K ≤ K0 and let
H > K0 + 1. Let χ2

i , i ≥ 1, be i.i.d. χ2 random variables with
H − K0 − 1 degrees of freedom and define

X(m) =

m−K0∑
i=1

χi , m ≥ K0 + 1.

Then, for all positive integers N > K0, the collection of test
statistics TK0,(m),m = K0 + 1, · · · ,N, are jointly stochastically
bounded by X(m),m = K0 + 1, · · · ,N, as n tends to ∞.
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Simulations

I
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I

β1(t) = 0.9
√

2 cos(2πt) + 1.2
√

2 cos(4πt)− 0.5
√

2 cos(8πt)

+
∑
k>4

√
2

(2k − 1)3
cos(2kπt),

β2(t) = 0.45
√

2 cos(2πt) + 0.6
√

2 cos(4πt)− 3
√

2 sin(6πt)

+1.2
√

2 sin(8πt) +
∑
k>4

(−1)k
√

2

(2k)3
sin(2kπt).

I

Y = 〈β1,X 〉 × (2〈β4,X 〉+ 1) + ε,
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Simulations

I Assume that the Xi ’s are observed at 501 equally-spaced
points on [0, 1]. FPCA is performed using Ramsay’s fda
package in R.

I Decide the dimension of the EDR space using the χ2 test and
the adjusted χ2 test. For comparison, we consider m = 5 and
m = 7. (The first 5 PC explain about 90% of the variation in
the curves, and the first 7 PC explain roughly 95%.)

I For the adaptive Neyman test, we choose N = K0 + 30
(N ∼ 30 to 35).

I We let α = .05.
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Simulations

n = 200 n = 500

χ2 test (m = 5) 0.040 0.047
Adj. χ2 (m = 5) 0.068 0.068

χ2 test (m = 7) 0.358 0.913
Adj. χ2 (m = 7) 0.410 0.899

χ2 test (m = 30) 0.085 0.566
Adj. χ2 (m = 30) 0.170 0.616

Adaptive Neyman 0.229 0.885

Table: Empirical frequencies of finding the correct model
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Tecator data

I Following the literature, we used the first 172 samples for
training and the last 43 for testing, and we focused on the
most informative part of the spectra, with wavelengths
ranging from 902 to 1028 nm.

I All of our tests identified EDR dimension K = 3.
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Tecator data
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Concluding remarks

I In this talk we deal with the problem of deciding the
dimension of the EDR space in a functional-data setting.

I We assume that the predictor is a random function residing in
a Hilbert space and has an elliptically contoured distribution,
and develop inference procedures based on rigorous statistical
tests to determine the dimension of the EDR space.

I While we focus on infinite-dimensional functional data, all of
our results hold without modification for finite-dimensional
data, including the “small n, large p” setting for which
dimension reduction issues are especially important.
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Concluding remarks

I Our procedures are defined by focusing on the information
contained in sample principal component scores of the
functional data. At the heart of our methodology is an
asymptotic representation of the sum of small eigenvalues of
the sliced-inverse-regression sample covariance matrix.

I In this work we focus on densely recorded functional data, for
which standard nonparametric regression techniques can be
applied to preprocess the data. A large proportion of
commonly seen functional data fall in this category. Many
authors have considered principal component analysis for
sparsely observed functional data, e.g., data obtained from
longitudinal studies. Extending those approaches to the
context of this paper requires further research.
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