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1. Introduction: Models for data networks.

When a file is sent through the Internet:

1. Divided into packets.

2. Headers: Packets numbered and labeled with

• Source and destination ip addresses

• Souce and destination port numbers

• Packet size

• Internet protocol (TCP?, UDP?, . . . )

• Time stamp of arrival at sniffer.

3. Stored and forwarded through routers.

4. Reassembled into the original file upon delivery.
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Plausible goals:

• How to model Internet transmissions based on collected data of individual
packet headers?

• Since the Internet behaves partly as a result of human stimulation, hope
somewhere in this mess of data there lurk Poisson points.

• How to amalgamate packets into higher order entities which simplifiy mod-
eling and allow fluid or continuous type models?

• What entity arrival times can plausibly be regarded as derived from Poisson?

• Teach a computer to mimic Internet sessions and hence end user Internet
behavior.
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2. Data sessions

Definition 1 (Sarvotham et al. (2005)) A session is a cluster of packets with
same source and destination network addresses, such that the delay between any
two succesive packets in the cluster is less than a threshold t(= 2s).

Other definitions possible.

2.1. Session descriptors:

For each session, compute the following descriptors:

• S : Number of bytes transmitted (size).

• D : Duration of the session.

• R = S/D : Average transfer rate.

• Γ: Starting time.

• For studying burstiness, some measure of peak rate.
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2.2. Sample data set.

http://wand.cs.waikato.ac.nz/wits/

• TCP traffic (www, email, FTP)

• Traffic sent to a University of Auckland server on December 8, 1999, between
3 and 4 pm.

• Raw data: 1,177,497 packet headers.

• Harvest working data set of the form {(Si, Di, Ri,Γi) : 1 ≤ i ≤ 44, 136}.

Originally used by Sarvotham et al. (2005) to study of sources of burstiness: Bursti-
ness is important in order to understand congestion because of the sudden peak
loads it introduces to the network; qos concerns.

http://wand.cs.waikato.ac.nz/wits/
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Figure 1: Bytes per time (seconds) process.
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2.3. The alpha-beta split

Sarvotham et al. (2005)

Definition 2 (δ-maximum input) Divide each session in l consecutive intervals
of length δ. Let

Bi = # bytes transmitted over the ith subinterval, i = 1, . . . , l.

The δ-maximum input of a session is defined as Mδ =
∨l
i=1Bi.

Definition 3 (Alpha-beta split) Choose a high threshold u. A session with a
δ-maximum input Mδ is called

• alpha, if Mδ ≥ u,

• beta, if Mδ < u.
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Empirical features

Sarvotham et al. (2005) found:

• Alpha-sessions are the major source of burstiness.

• In alpha-sessions: R ⊥⊥ S (sort of).

• In beta-sessions: R ⊥⊥ D (sort of).

• Split usually produces huge beta-group (≈ tens of thousands) vs. tiny alpha-
group (< 100).

Does further segmentation of the beta-group produce meaningful information?

Goals:

• Better description of dependence structure of (S,D,R) within segment

• Simulation model.
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2.4. Finer segmentation

Split the data into m groups of approximately equal size according to the empirical
quantiles of the burstiness predictor or covariate; we had to define a new definition
of peak rate.

Will use m = 10 and speak of the decile groups. Split into decile groups.

Features:

• Rather than a beta-group, we have 9 groups each with the peak rate covariate
in a given decile range.

• Claim the alpha-beta split masks further structure and it is informative to
take into account the explicit level of the covariate.
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2.5. Peak rate

Definition 4 For a session with n packets:

B′i =# bytes in ith packet,
T ′i =interarrival time between ith and (i+ 1)th packet,

i = 1, . . . , n− 1. For k = 2, . . . , n, the peak rate of order k is

P (k) =
n−k+1∨
i=1

∑i+k−1
j=i B′j∑i+k−2
j=i T ′j

.

The P (k) is the maximum transfer rate using only k consecutive packets.
The peak rate is defined as

P∨ =
n∨
k=2

P (k).

[Makes sense empirically but would be difficult to work with analytically.]
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Outline

• Divide the 44,136 sessions into 10 groups according to the deciles of P∨.

• Study the marginals of (S,D,R) in the 10 decile groups. (Heavy tails?)

• Study dependence structure of (S,D) using EVT across the decile groups.

• For our definition of peak rate, P∨, within a decile group, data sessions are
initiated according to a homogeneous Poisson process.

– Not true for other peak rate definitions of Sarvotham et al. (2005).]
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3. Structure of (S,D,R).

3.1. Heavy tails

Definition 5 (Heavy tails) Call Y has heavy tailed if its cdf F satisfies

F̄ (y) = y−1/γ`(y),

where ` is slowly varying and γ > 0.

Quickie summary:

• (S,D) appear to be jointly heavy tailed in each decile group.

• R is only heavy tailed for the highest decile group;

• R does not appear to be even in a domain of attraction for any of the 9 lower
decile groups.
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3.2. Estimation of γ’s

Definition 6 (Hill estimator) Let {X1, . . . , Xn} be iid (or stationary + mixing)
with order statistics

X1:n ≤ · · · ≤ Xn:n.

The Hill estimator of γ > 0 is

γ̂k,n =
1
k

n∑
i=n−k+1

log
Xi:n

Xn−k:n
. (1)

Theorem 1 (Consistency of Hill) If the distribution is heavy tailed +additional
second order condition, as k →∞, n→∞, k/n→ 0:

√
k(γ̂k,n − γ) d−→ N(0, γ2). (2)

Equivalent to peaks over threshold method and MLE.
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Figure 2: Size, duration and rate in the 10th decile group



Intro

Sessions

Distn Structure

Dependence

CEV: Intro

CEV: Def

CEV↔EVT

Detection

Finale

Title Page

JJ II

J I

Page 15 of 45

Go Back

Full Screen

Close

Quit

decile γS s.e. γD s.e. γR s.e.
1 0.56 0.056 0.60 0.028
2 0.55 0.061 0.47 0.023
3 0.62 0.044 0.63 0.034
4 0.62 0.036 0.62 0.029
5 0.61 0.035 0.55 0.029
6 0.69 0.040 0.55 0.028
7 0.88 0.042 0.73 0.037
8 0.77 0.045 0.71 0.033
9 0.70 0.037 0.69 0.032
10 0.73 0.034 0.68 0.032 0.58 0.027

Table 1: Summary of Hill estimates with asymptotic standard errors for the shape
parameter of S, D and R.

Conclude: It appears that marginal distributions vary by decile.
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4. Dependence structure of (S,D)

• Dependence structure varies by decile. Seen already in simple scatter plots.

• Assess dependence by computing angular measures which give favored direc-
tions for big values of (S,D).

– Standardize the pairs to have the same tails by ranks method .

– Threshold the resulting pairs and keep only those data pairs outside a
large circle.

– Convert to polar coordinates.

– Make density plot of θ-coordinate.
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Simple scatter plot.

Figure 3: S vs. D for (left) 1st P∨ decile and (right) 6th P∨ decile.
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Alpha-beta-like split; angular measures (S,D)

Figure 4: Non-parametric estimates of the spectral density of S for (left) a beta
aggregate of 9 deciles and (right) an alpha group.
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Finer split: plots reasonably symmetric, unimodal

Figure 5: Non-parametric estimates of the spectral density of S from left to right
and top to bottom: 1st to 9th decile groups.
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Comments

• Seek to relate the explicit level of P∨ with the dependence structure of (S,D).

Seek global model: Hope the spectral measure S can be approximated by
some Sψ where a (generalized linear) model links g(ψ) ∼decile group.

• Using QQ plots and sample acf’s can check within decile groups, session
initiation times look Poisson. This is not true across the whole data set–
only when the data is segmented by decile group; also not true with other
definitions of peak rate.
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4.1. Global model: Toward a parametric model for the spectral
density S

Logistic model:

hψ(t) =
1
2

(
1
ψ
− 1
)
t−1−1/ψ(1− t)−1−1/ψ[t−1/ψ + (1− t)−1/ψ]ψ−2, (3)

=h(t), 0 ≤ t ≤ 1,

with ψ ∈ (0, 1).

Features:

• Symmetric.

• For ψ < 0.5 : h is unimodal and as ψ → 0 we obtain perfect dependence.

• For ψ > 0.5 : h is bimodal and as ψ → 1 we obtain asymptotic independence.

This allows us to quantify the effect of P∨ on the dependence between S and D.



Intro

Sessions

Distn Structure

Dependence

CEV: Intro

CEV: Def

CEV↔EVT

Detection

Finale

Title Page

JJ II

J I

Page 22 of 45

Go Back

Full Screen

Close

Quit

Parametric vs non-parametric density estimates.

Figure 6: Parametric estimates of the spectral density S superimposed to non-
parametric counterparts, from left to right and top to bottom: 1st to 9th decile
groups.
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Dependence of (S,D) as a function of P∨

Fit a global trend logistic model where

g−1(ψ) = β0 + β1 log(P∨).

After some experimenting choose link function g

g(x) =
1/2

1 + e−x
.
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Sketch of simulation:

1. In the existing data set, each session has an associated P∨. Form the EDF.
Get a bootstrap sample of P∨ from this EDF and divide into m = 10 samples
according to the quantiles.

2. For each group, simulate the starting times of the sessions via homogeneous
Poisson process.

3. For each P∨j , compute the corresponding value of ψj from the GLM and use
it to simulate an angle Θj from the logistic distribution.

4. Simulate the radius component Nj ; use Pareto for the heavy tail.

5. Transform to Cartesian coordinates and then invert using fitted marginal
distributions to get back to the original scale where (Sj , Dj) do not have
same tails.Compute Rj = Sj/Dj .

What about R?

• Except for highest decile, R is not in a domain of attraction and not heavy
tailed.

• Evidence R|S can be modeled.

• Evidence that R|D cannot be modeled.

Credit:

Lopez-Oliveros and Resnick (2009) + ideas of Jan Heffernan.
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5. CEV: Introduction

• The conditional (multivariate) extreme value model (CEV).

– What is it? Short, slightly crude answer (more later): (X,Y ) satisfy a
conditional extreme value model if

∗ Y is in a domain of attraction of an extreme value distribution and
∗ ∃α(t) > 0, β(t) ∈ R such that

P
[X − β(t)

α(t)
∈ ·
∣∣∣Y > t

]
⇒ H(·),

for a non-degenerate distribution H. Given Y is large, the distribu-
tion of X is approximately the type of H.

– How is it positioned vis a vis usual theory? What is its relationship to
usual multivariate EVT and theory of multivariate regular variation.

– Applicable? (Cautious but firm “yes”.)

– Can we detect when the model is appropriate and plausible for a data
set? (Cautious “yes”. Rank transformations + graphical plotting meth-
ods: Hillish, Pickandsish, Kendall’s tau plots.)
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• Problems with traditional multivariate EVT.

– Usual formulation of multivariate EVT has the observation vectors
X1, . . . ,Xn iid random vectors in Rd and each component of the d-
dimensional vector Xi should be in a one dimensional domain of attrac-
tion.
May not be true. See QQ plot later.

– Even if traditional theory’s assumptions satisfied, may (and usually do)
have asymptotic independence which hinders making sensible estimates
of risk regions where several coordinates are simultaneously large.

• So CEV model may be applicable if either

– Not all components of a vector are in a domain of attraction.

– Multivariate EVT applies but asymptotic independence prevents helpful
estimates of the probability of risk events; CEV–if appropriate–provides
a supplementary assumption.
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Figure 7: QQ plot for R; quantiles of exponential vs quantiles of logR.



Intro

Sessions

Distn Structure

Dependence

CEV: Intro

CEV: Def

CEV↔EVT

Detection

Finale

Title Page

JJ II

J I

Page 28 of 45

Go Back

Full Screen

Close

Quit

6. Conditional EV model.

CEV model may be applicable if either

• Not all components of a vector are in a domain of attraction.

• Multivariate EVT holds but asymptotic independence prevents estimates of
the probability of risk events requiring two or more components be large
simultaneously. A way forward is to

– Assume more: A supplementary assumption such as

∗ Hidden regular variation
∗ Conditional extreme value model.
∗ Check the additional assumption is statistically warranted.
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6.1. CEV Model definition: Basic Convergence (d = 2)

Given a random vector (X,Y ) with

FY (x) := P [Y ≤ x] ∈MDA(Gγ),

and ∃ b(·) ∈ R, a(·) > 0 such that for some γ ∈ R, as t→∞,

tP
[Y − b(t)

a(t)
≥ x

]
→ − logGγ(x) = (1 + γx)−1/γ , t→∞.

Further assume ∃ β(·) ∈ R, α(·) > 0 and a Radon measure µ such that

tP
[(X − β(t)

α(t)
,
Y − b(t)
a(t)

)
∈ ·
]
v→ µ(·), (4)

in M+

(
[−∞,∞]× (−∞,∞]

)
, and where µ is non-null and satisfies

non-degeneracy conditions: for each fixed y ∈ {x : (1 + γx)−1/γ > 0},

1. µ
(
(−∞, x]× (y,∞]

)
is not a degenerate distribution function in x;

2. µ
(
(−∞, x]× (y,∞]

)
<∞.



Intro

Sessions

Distn Structure

Dependence

CEV: Intro

CEV: Def

CEV↔EVT

Detection

Finale

Title Page

JJ II

J I

Page 30 of 45

Go Back

Full Screen

Close

Quit

6.2. Observations:

• The Basic Convergence (4) implies the conditioned limit

P
[X − β(t)

α(t)
≤ x

∣∣∣Y > b(t)
]
→ µ

(
[−∞, x]× (0,∞]

)
=: H(x),

where the limit is assumed to be a proper probability distribution in x.

• Suppose (X,Y ) ∈MDA(G).

– With no asymptotic independence in the EVT sense, Basic Convergence
automatically holds and in this case no value added:

DOA+ No Asy Indep ⇒ Basic Convergence=CEV.

– With asymptotic independence in EVT sense,

∗ Basic Convergence with the same EVT normalizing constants fails
because non-degeneracy conditions fail.

∗ BUT, Basic Convergence with different normalizing constants could
still hold. [Have theoretical examples; need data examples.]

• Antecedents and related: Balkema and Embrechts (2007), Das and Resnick
(2008a,b), Fougéres and Soulier (2008), Heffernan and Resnick (2007), Hef-
fernan and Tawn (2004), Maulik et al. (2002).
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7. Connection to classical EVT and Regular variation.

Connection to classical theory of multivariate extremes comes from regular variation–
unifying idea providing a common framework for several theories.

Suppose CONE is a cone (or just star shaped) centered at 0:

x ∈ CONE ⇒ tx ∈ CONE, t > 0.

Suppose Z∗ is a random vector. Z∗ has a regularly varying distribution in standard form
on CONE if

tP
[Z∗
t
∈ ·
]
v→ ν∗(·), in M+(CONE).

Here M+(CONE) all Radon non-negative measures on CONE. A Radon measure
is finite on compact sets.
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7.1. Standardization

Standardization is the process of marginally transforming

X 7→ Z∗

so that the distribution of Z∗ is standard regularly varying on a cone CONE: For
some Radon measure ν∗(·)

tP
[Z∗
t
∈ ·
]
v→ ν∗(·), in M+(CONE).

For EVT,
CONE = E = [0,∞] \ {0}.

• Standardization analogous to copula transformation but better suited to
studying limit relations (Klüppelberg and Resnick, 2008).

• Characterizations of limit relations rely on characterizations of the standard-
ized form.

• Definition of compact set dependent on the cone.

• Data never come in standard form; to transform data to standard case use
(anti)-ranks method: replace vectors by vectors of componentwise anti-ranks
(de Haan and de Ronde, 1998, de Haan and Ferreira, 2006, Huang, 1992,
Resnick, 2007)).
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7.2. Different cones ⇒ different theories I–table.

CONE Application

E = [0,∞] \ {0} multivariate extreme value theory

E0 = (0,∞] hidden regular variation,
coefficient of tail dependence;

Eu = [0,∞]× (0,∞] Conditioned limit theorems when
one component is extreme.

[−∞,∞] \ {0} weak conv to stable laws

Table 2: Theories stemming from standard multivariate regular variation on dif-
ferent cones.
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7.3. Different cones ⇒ different theories II–artwork.

The different cones have different compacta and hence Radon means something
different on each space.
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7.4. Contrast EVT vs CEV

• EVT: Standardization to regular variation on E is always possible:

– The distribution of the random vector X is in the domain of attrac-
tion of the multivariate EV distribution G(x) iff ∃ monotone marginal
transformations b(i)(t), i = 1, . . . , d (satisfying limiting properties) such
that

Z∗ =
(
(b(i))←(X(i)), i = 1, . . . , d

)
is standard regularly varying on E = [0,∞] \ {0}. Thus

X =
(
b(i)(Z∗(i)), i = 1, . . . , d

)
.

• CEV: Suppose the basic convergence of the CEV holds.

– Standardization is not always possible

– It is possible iff the limit measure µ is NOT a product measure (B. Das)

– If one can standardize, then standardization is to regular variation on
Eu.
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8. Detecting when the model is appropriate

Estimators to help us decide if this model consistent with the data:

• Hillish (Hill-like).

• Pickandsish (suggested by the Pickands estimator of the EV index).

• Kendall’s tau.

Note

• Rank based methods bypass need to estimate centering (b(t), β(t)) and scaling
(a(t), α(t)) functions.

• Asymptotics suggest thresholding the data according to Y ’s which are large
and using these (X,Y )’s to make inference.

• Strong suspicion that distribution of X not in a univariate MDA but distri-
bution of Y is in MDA helps lead to suspicion we might apply CEV.
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Notation:

(X1, Y1), . . . , (Xn, Yn); iid bivariate sample.
Y(1) ≥ . . . Y(n); order statistics of Y ’s in decreasing order.
Y(1) ≥ . . . Y(k); use the part of the sample corresponding

to k largest Y ’s–corresponds to thresholding
data according to large Y ’s.

X∗i , 1 ≤ i ≤ n; X∗i is the X-variable corresponding to Y(i);
concomitant of Y(i).

Rki , 1 ≤ i ≤ k ≤ n; Rank of X∗i among X∗1 , . . . , X
∗
k ;

often write Ri = Rki .
X∗1:k ≤ X∗2:k ≤ . . . X∗k:k; The order statistics in increasing order

of X∗1 , . . . , X
∗
k .



Intro

Sessions

Distn Structure

Dependence

CEV: Intro

CEV: Def

CEV↔EVT

Detection

Finale

Title Page

JJ II

J I

Page 38 of 45

Go Back

Full Screen

Close

Quit

Assume basic convergence:

tP

[(X1 − β(t)
α(t)

,
Y1 − b(t)
a(t)

)
∈ ·

]
→ µ(·), t→∞.

This implies convergence of empirical measures:

µn(·) :=
1
k

n∑
i=1

ε(
Xi−β(n/k)
α(n/k) ,

Yi−b(n/k)
a(n/k)

)(·)⇒ µ(·)

as n→∞, k = k(n)→∞, kn → 0.
Scaling and weak convergence arguments yield (0 < x < 1, y > 1)

µ∗n
(
[0, x]× (y,∞]

)
:=

1
k

k∑
i=1

ε(Ri
k ,

k+1
i

)([0, x]× (y,∞])

⇒µ∗
(
(−∞, H←(x)]× (y,∞]

)
,

where

• H(x) = µ
(
[−∞, x]× (0,∞]

)
, assumed to be a pm,

• µ∗
(
[−∞, x]× (y,∞]

)
= µ

(
[−∞, x]× (y

γ−1
γ ,∞]

)
.

• γ is the EV index for Y ;
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8.1. Hillish estimator.

Define

Hillishk,n = Hillishk,n(X,Y ) :=
1
k

k∑
j=1

log
k

Rkj
log

k

j
.

Then, as n→∞, k →∞, k/n→ 0,

Hillishk,n
P→ I∗

where
I∗ =

∫ ∞
1

∫ ∞
1

µ∗
(
[−∞, H←(

1
x

)]× (y,∞]
)dx
x

dy

y
.

Method:

• Use
µ∗n
(
[0, x]× (y,∞]

)
⇒ µ∗

(
(−∞, H←(x)]× (y,∞]

)
.

• Integrate to limit in this convergence.

• This is the same general method as used to prove Hill estimator converges.
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Detect product measure.

Criterion: µ is product measure iff

Hillishk,n(X,Y ) P→ 1 = I∗,

and
Hillishk,n(−X,Y ) P→ 1 = I∗.

8.2. Pickandsish estimator.

Based on ratios of differences of order statistics of the concomitants. Let 0 < p < 1.

Pickandsishp,k =
X∗pk:k −X∗pk/2:k/2
X∗pk:k −X∗pk/2:k

.

Then

Pickandsishp,k
P→ H←(p)(1− 2ρ)− ψ2(2)

H←(p)−H←(p/2)
.

8.3. Kendall’s tau

Classical Kendall’s tau also converges when model holds.
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Data example 1: e2e sessions; (R,D) top [yech] and
(R, S) bottom [not bad]–Pickandsish, Hillish, Kendall’s
Tau
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Hillish for (R, S) data segmented by peak rate
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9. Final thoughts

• Need more killer apps; especially when (X,Y ) ∈ DOA with asymptotic in-
dependence.

• It would be nice to prove Hillish and Pickandsish estimators are asymptoti-
cally normal or else think about bootstrap CI’s. Must deal with dependence
of the ranks.

• Crucial pact with the devil: We avoided having to estimate α(·), β(·), a(·),
b(·), γ by switching to the rank based methods. BUT

H(x) = µ
(
[−∞, x]× (0,∞]

)
appears in the limits and H(x) is, of course, unknown.

• Made some progress in dimensions higher than two.

• Consistency issues for (S,D,R) where S/D = R. Currently squaring theory
with empirical observation giving headaches.

We are thinking about all this.
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