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Model

Based on (Yi , xi ), xi ∈ [a, b], i = 1, ..., n with true relationship

Yi = f (xi ) + εi , εi ∼ N(0, σ2)

we aim to estimate f (·) ∈W p+1[a, b].

Spline-based methods

Regression splines

Smoothing splines

Penalized splines



Regression splines

One chooses

some spline basis functions Ni (·) of degree p

based on a set of l knots κ1, . . . , κl

and finds f̂reg(·) = Nl(·)β̂ solving

min
β

n∑
i=1

{Yi − Nl(xi )β}2.

The resulting estimate is the LSE

f̂reg(·) = Nl(·)(NT
l Nl)

−1NT
l Y ,

with Nl as a n × l dimensional spline basis matrix (e.g. B-splines),

and Nl(xi ) as the row vector of Nl evaluated at xi .



Regression spline estimator

+ optimal rate of convergence

+ low parameter dimension

+ no boundary effects

– number and placements of knots problem
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Smoothing splines

A 2q − 1 degree smoothing spline f̂spl is the minimizer of

n∑
i=1

{yi − f (xi )}2 + λ

∫ b

a
{f (x)(q)}2dx ,

for f (·) ∈W q[a, b] and can be written as

f̂spl(·) = Nn(·)(NT
n Nn + λnDn)−1NT

n Y ,

with Nn as a n × n natural (2q − 1)-degree spline model matrix,

corresponding penalty matrix Dn and λn chosen with e.g. GCV.



Smoothing spline estimator

+ no knots placement problem (knots equal observations)

+/– rate of convergence depends
on the natural boundary conditions met

– high parameter dimension

– boundary effects
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Between regression and smoothing splines

Choosing l < k � n knots κ1, . . . , κk and solving

min
β

( n∑
i=1

{Yi − Nk(xi )β}2 + λ

∫ b

a

[
{Nk(t)β}(q)

]2
dt
)
,

result in

f̂pen(·) = Nk(·)(NT
k Nk + λkDk)−1NT

k Y

with Nk as some n × k dimensional p-degree spline basis matrix,

Dk as the corresponding penalty and λk chosen with e.g. GCV.



Penalized spline estimator

+ no knots placement problem

+ low parameter dimension

+ flexible choice of bases and penalties

+ links to mixed and Bayesian models

? asymptotic properties are not explored

Some first results

Hall and Opsomer (Biometrika, 2005)
Li and Ruppert (Biometrika, 2008)
Kauermann, Krivobokova and Fahrmeir (JRSSB, 2009)
Claeskens, Krivobokova and Opsomer (Biometrika, 2009)



Optimal rate of convergence

Stone (Ann. Statist., 1982):
For any nonparametric estimator f̂ of f ∈ C p+1[a, b] the optimal rate
of convergence for ‖f̂ − f ‖Lq , 0 < q <∞ is

n−
2p+2
2p+3

Smoothing technique Control parameter Optimal order

Regression splines number of knots k ∼ C1n
1

2p+3

Smoothing splines smoothing parameter λ ∼ C2n
1

2p+3

Penalized splines number of knots & k ∼ ?
smoothing parameter λ ∼ ?



Two asymptotic scenarios

For a penalized spline estimator f̂pen = N(NTN + λDq)−1NTY

AMSE(f̂pen) =
average + average squared + average squared
variance shrinkage bias approximation bias

and

K 2q
q = maximum eigenvalue of λ(NTN)−1Dq

defines the breakpoint between two asymptotic scenarios

Kq < 1 leads to the regression splines type asymptotics

Kq ≥ 1 leads to the smoothing splines type asymptotics



Asymptotic scenarios with Kq < 1

For Kq < 1 and

k ∼ C1n
1

2p+3 and λ = O (nγ) , γ ≤ p + 2− q

2p + 3

we find

f̂pen(·) converges to f (·) with n−
2p+2
2p+3

Average approximation and shrinkage bias are of the same order

Asymptotic order of k is the same as for regression splines

Shrinkage bias becomes negligible for small λ



Asymptotic scenarios with Kq ≥ 1

For Kq ≥ 1, λn2q−1 →∞ and

λ = O
(
n

1
2q+1

)
and k ∼ C2n

ν , ν ≥ 1

2q + 1

we find

f̂pen(·) converges to f (·) with n−
2q

2q+1 > n−
2p+2
2p+3 for q ≤ p

Shrinkage bias dominates the AMSE

Asymptotic order of k and λ depend only on q

Average approximation bias is negligible



Pointwise bias and variance

Representing

f̂pen(x) = f̂reg(x)− λN(x)(NTN + λDq)−1Dq(NTN)−1NTY

under certain assumptions one finds

E{f̂pen(x)} − f (x) ≈ ba(x) + bλ(x)

Var{f̂pen(x)} ≈ σ2

n
N(x)(G + λDq/n)−1G (G + λDq/n)−1N t(x)

with G =
∫ b

a
N(x)TN(x)ρ(x)dx



Two bias components

Approximation bias

ba(x) = − f (p+1)(x)

(p + 1)!

K∑
j=0

I[κj ,κj+1)(x)(κj+1 − κj)
p+1Bp+1

(
x − κj

κj+1 − κj

)
,

with Bp+1(·) denoting the (p + 1)th Bernoulli polynomial.

Shrinkage bias

bλ(x) = −λ
n

N(x)(G + λDq)−1Dqβ,

where β is s.t. N(·)β is the best L∞ approximation to f (·).



Pointwise bias and variance
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Summary so far

Penalized splines enjoy similarities to regression and smoothing splines

Kq defines a clear breakpoint between two asymptotic scenarios

Asymptotic scenarios with Kq < 1 can result in a smaller AMSE

A guideline for choosing k is needed

Pointwise expressions for bias and variance are available

Equivalent kernel functions can provide more insights (ongoing work)



Mixed model representation

Representing

Nβ = N(Nbb + Nuu) = Xb + Zu,

with (Nb,Nu) is of full rank, NT
b Nu = NT

u Nb = NT
b DqNb = 0,

NT
u DqNu = I and assuming

Y |u ∼ N(Xb + Zu, σ2In), u ∼ N(0, σ2
uI )

result in the linear mixed model with BLUP

f̃pen(x) = Nm

(
NT

mNm +
σ2

σ2
u

Dm

)−1

NT
mY

with Nm = (X ,Z ) and Dm = diag(0p+1, 1k+p+1−q).



Two models

f̂pen = N(NTN + λD)−1NTY

Nβ is fixed

λ is estimated with e.g. GCV

f̃pen = N
(
NTN + σ2/σ2

uD
)−1

NTY

Nβ ∼ N(Xb, σ2
uZZT )

σ2/σ2
u is a (RE)ML estimate

It is known

In general f̃pen tends to overfit f (current work)

σ2/σ2
u is very robust to the correlation misspecification

(Krivobokova and Kauermann, JASA 2008)



REML and GCV based λ

We compare REML and GCV based λ for two cases

f ∈W q[a, b]

f (x) ∼ N{X (x)b, σ2
uZ (x)Z (x)t}

Define λREML, λREML and λMSE , λMSE as solutions to

EY |u

(
∂lRp (λ)

∂λ

)
= 0 and EY ,u

(
∂lRp (λ)

∂λ

)
= 0

EY |u

(
∂GCV (λ)

∂λ

)
= 0 and EY ,u

(
∂GCV (λ)

∂λ

)
= 0



Two smoothing parameter estimates

If f ∈W q[a, b] then λREML and λMSE solve

0 = EY |u

(
∂lRp (λ)

∂λ

)
=
∂AMSE (λ)

∂λ
+
∂b(x , λ)

∂λ
+ o(n−1)

0 = EY |u

(
∂GCV (λ)

∂λ

)
=
∂AMSE (λ)

∂λ
+ o(n−1),

with b(x , λ) = f t(Sλ − S2
λ)f /n − σ2

ε tr(Sλ + S2
λ)/n + σ2

ε log |VX tV−1X |/n,

V = I + ZZ t/λ



Two smoothing parameter estimates

Using the Taylor expansion, one obtains

λREML

λMSE
= 1 +

σ2
ε {tr(S2

λ)− p − 1 + q} − f t(Sλ − S2
λ)f

σ2
ε tr(S2

λ)− p − 1 + q
+ o(1)

with Sλ = S(λMSE )

With the Demmler-Reinsch decomposition Sλ = A diag(1 + λs)−1At

the numerator can be written as

σ2
ε {tr(S2

λ)− p − 1 + q} − f t(Sλ − S2
λ)f = σ2

ε

k∑
i=1

1− λsic
2
i /σ

2
ε

(1 + λsi )2
,

with c = At f .



Two smoothing parameter estimates

The term

σ2
ε

k∑
i=1

1− λsic
2
i /σ

2
ε

(1 + λsi )2

can be either positive, negative or zero, depending on f , σ2
ε and k

Note that maxi ci/σε depends on the signal-to-noise ratio

Then

for λs1 = K 2q
q < 1 and maxi ci/σε < 1 it holds λREML > λMSE

if maxi ci/σε < tr(S2
λ)/tr(Sλ − S2

λ) then λREML > λMSE

for λs1 = K 2q
q ≥ 1 and k → n it holds λREML < λMSE

there can exist such k that λREML ≈ λMSE



Two smoothing parameter estimates

If f ∈W q[a, b] then

REML is biased w.r.t. AMSE

REML performance depends on k , f and σ2
ε

If f (x) ∼ N{X (x)b, σ2
uZ (x)Z (x)t} then

λREML = λMSE (Krivobokova and Kauermann, JASA, 2007)



Mixed models for generalized responses

For Yi |xi ∼ exp{yTh−1(xi )− ρ{h−1(xi )}+ c(Yi )} one models

E (Y |u) = h(Xb + Zu), u ∼ N(0, σ2
uI ),

leading to the likelihood

L(b, σ2
u) = σ

−(k+p+1−q)
u

∫
Rk+p+1−q

exp[−g(u)]du,

with g(u) = −yT (Xb + Zu) + 1T
n ρ(Xb + Zu) + uTu/(2σ2

u),

which is not available analytically and is usually solved with the
Laplace approximation (Breslow & Clayton, JASA 1993)



Laplace approximation

The Laplace approximation is reliable for n→∞ and k “small”
with the error term

ε0 = −gjlrsg
jlg rs [3]/24 + gjlrgstv

(
g jlg rsg tv [9] + g jsg ltg rv [6]

)
/72

It has been shown that if k ∼ C1n
1/(2p+3), then ε0 is negligible

(Kauermann, Krivobokova, Fahrmeir, JRSSB 2008).

Still to do: how big is ε0 for Kq ≥ 1?



Summary

First asymptotic results in a unified framework

Less knots implies less boundary effects

Less knots implies λREML ≈ λMSE

More asymptotic results are needed for generalized framework

Generalization to smoothing in Rd and its asymptotics is open
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