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Given a probability measure µ on Borel sigma-field of Rd, and a function f : Rd 7→ R, the main issue
of this work is to establish inequalities of the type f(m) ≤ M , where m is a median (or a deepest point
in the sense explained in the paper) of µ and M is a median (or an appropriate quantile) of the measure
µf = µ ◦ f−1. For a most popular choice of halfspace depth, we prove that the Jensen’s inequality holds
for the class of quasi-convex and lower semi-continuous functions f .

To accomplish the task, we give a sequence of results regarding the ”type D depth functions” according
to classification in Y. Zuo and R. Serfling, Ann. Stat. 28 (2000), 461-482, and prove several structural
properties of medians, deepest points and depth functions. We introduce a notion of a median with respect
to a partial order in Rd and we present a version of Jensen’s inequality for such medians. Replacing
means in classical Jensen’s inequality with medians gives rise to applications in the framework of Pitman’s
estimation.
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Jensen’s inequality

Let µ be a probability measure on Borel sets of Rd, d ≥ 1, and let f be a real valued convex function
defined on Rd. The Jensen’s inequality states that

(1) f(m) ≤M

where

m =

∫
Rd

x dµ(x) and M =

∫
R
f(x) dµ(x).

Can we replace means m and M with corresponding medians?

Recall: m ∈ {Medµ} if

(2) µ((−∞,m]) ≥ 1

2
, µ([m,+∞)) ≥ 1

2
.

The set {Medµ} of all medians m is a nonempty compact interval.

• Medians always exist
• Issues of robustness
• Inequalities can be sharper
• Build up a median based theory
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Two results in R (d = 1)

Given a measure µ and a measurable real valued function f , let µf be a measure defined by µf (B) =
µ({x | f(x) ∈ B}), and let M be its median.

Theorem 1. (R. J. Tomkins, Ann. Probab. 1975) Let µ be a probability measure on R and let f be a
convex function defined on R. Then for every median m of µ there exists a median M of µf such that (1)
holds, i.e.,

(3) max{f({Medµ})} ≤ max{Medµf}.

Theorem 2. (M. M, SPL 2005) Let µ be a probability measure on R and let f be a quasi-convex lower
semi-continuous function defined on R. Then for every median M of µf there exists a median m of µ such
that (1) holds, i.e.,

(4) min{f({Medµ})} ≤ min{Medµf}.
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Multivariate medians

To extend mentioned results to d > 1, we have first to choose among several possible notions of multi-
variate medians.

We may pick up a characteristics property of one-dimensional medians and extend it to a multivariate
setup. However, by doing so, not all median properties can be preserved.

Let U be a specified collection of sets in Rd, d ≥ 1, and let µ be a probability measure on Borel sets of
Rd. For each x ∈ Rd, define a depth function

(5) D(x;µ,U) = inf{µ(U) | x ∈ U ∈ U}.
(Type D of Zuo and Serfling, AS 2000)

In the case d = 1, with U being the set of intervals of the form [a,+∞) and (−∞, b] we have

D(x;µ,U) = min{µ((−∞, x]), µ([x,+∞))},
and the set of deepest points has the following three properties:√

It is a compact interval.√
It is the set of all points x with the property that D(x;µ,U) ≥ 1

2
.√

It is affine invariant set.

Which properties will be preserved in d > 1 depends on a choice of a family U .
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Assumptions

D(x;µ,U) = inf{µ(U) | x ∈ U ∈ U}

(C1) for every x ∈ Rd there is a U ∈ U so that x ∈ U .

(C ′2) D(x;P,U) > 0 for at least one x ∈ Rd and

(C ′′2 ) lim
‖x‖→+∞

D(x;P,U) = 0

Condition (C1) implies that D ≥ 0, and (C2) implies that D is not constant.

Tukey’s depth: U is the set of all open (or all closed) halfspaces.

Let

V = {U c | U ∈ U}
The depth function can be also specified in terms of V .
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Level sets, centers of a distribution and medians -1

Lemma 1. Let U be any collection of non-empty sets in Rd, such that the condition (C1) holds:

(C1) for every x ∈ Rd there is a U ∈ U so that x ∈ U
and let V be the collection of complements of sets in U . Then, for any probability measure µ,

(6) Sα(µ,U) =
⋂

V ∈V,µ(V )>1−α

V,

for any α ∈ (0, 1] such that there exists a set U ∈ U with µ(U) < α; otherwise Sα(µ,U) = Rd.

Sα(µ,U) is called a level set.

If αm is the maximum value of D(x;µ,U) for a given distribution µ, the set Sαm(µ,U) is called the
center of µ and denoted by C(µ,U).

If αm ≥ 1/2, we use the term median.

EXAMPLE: Let V be the family of all closed intervals in R, and U the family of their complements.
Then

Sα = [qα, Q1−α],

where qα is the smallest quantile of µ of order α, and Q1−α is the largest quantile of µ of order 1− α:

qα = min{t ∈ R | µ
(
(−∞, t]

)
≥ α} and

(7)

Q1−α = max{t ∈ R | µ
(
[t,+∞)

)
≥ α}.

For α = 1
2
, [q 1

2
, Q 1

2
] is the median interval.
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Level sets, centers of a distribution and medians-2

Let V be a collection of closed subsets of Rd and let U be the collection of complements of sets in V ,
and assume the conditions:

(C1) for every x ∈ Rd there is a U ∈ U so that x ∈ U .

(C ′2) D(x;P,U) > 0 for at least one x ∈ Rd and

(C ′′2 ) lim
‖x‖→+∞

D(x;P,U) = 0

Theorem 3. Under (C1), the function x 7→ D(x;µ,U) is upper semi-continuous. In addition, under
conditions (C2), the set C(µ,U) on which D reaches its maximum is equal to the minimal nonempty set
Sα, that is,

C(µ,U) =
⋂

α:Sα 6=∅

Sα(µ,U).

The set C(µ,U) is a non-empty compact set and it has the following representation:

(8) C(µ,U) =
⋂

V ∈V,µ(V )>1−αm

V, where αm = maxx∈Rd D(x;µ,U).
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Some examples
Recall:

D(x;µ,U) = inf{µ(U) | x ∈ U ∈ U}
Sα(µ,U) =

⋂
V ∈V,µ(V )>1−α

V

1◦ Consider the halfspace depth in R2, with the probability measure µ which assigns mass 1/3 to points
A(0, 1), B(−1, 0) and C(1, 0) in the plane. Each point x in the closed triangle ABC has D(x) = 1

3
; points

outside of the triangle have D(x) = 0. So, the function D reaches its maximum value 1
3
.

2◦ Let us now observe the same distribution, but with depth function defined with the family V of
closed disks. The intersection of all closed disks V with µ(V ) > 2/3 is, in fact, the intersection of all disks
that contain all three points A,B,C, and that is the closed triangle ABC. For any ε > 0, a disc V with
µ(V ) > 2/3 − ε may contain only two of points A,B,C, but then it is easy to see that the family of all
such discs has the empty intersection. Therefore, Sα is non-empty for α ≤ 1/3, and again, the function
D attains its maximum value 1/3 at the points of closed triangle ABC. In fact, depth functions in cases
1◦ and 2◦ are equivalent regardless of the dimension. The value of 1/3 is the maximal depth that can be
generally expected in the two dimensional plane.

3◦ If V is the family of rectangles with sides parallel to coordinate axes, then the maximum depth is
2/3 and it is attained at (0, 0). Families V that are generalizations of intervals and rectangles will be
considered next. We show that the maximal depth with alike families is always at least 1/2, regardless of
dimension.
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Partial order and intervals in Rd

In d = 1, the median set can be represented as the intersection of all intervals with a probability mass
> 1/2:

{Medµ} =
⋂

J=[a,b]: µ(J)>1/2

J.

Let � be a partial order in Rd
and let a, b be arbitrary points in Rd

. We define a d-dimensional interval
[a, b] as the set of points in Rd that are between a and b:

[a, b] = {x ∈ Rd | a � x � b}

Assume the following three technical conditions:

(I1) Any interval [a, b] is topologically closed, and for any a, b ∈ Rd (i.e., with finite coordinates), the
interval [a, b] is a compact set.

(I2) For any ball B ⊂ Rd, there exist a, b ∈ Rd such that B ⊂ [a, b].
(I3) For any set S which is bounded from above with a finite point, there exists a finite supS. For any

set S which is bounded from below with a finite point, there exists a finite inf S.

Example: Convex cone partial order. Let K be a closed convex cone in Rd, with vertex at origin,
and suppose that there exists a closed hyperplane π, such that π∩K = {0} (that is, K \ {0} is a subset of
one of open halfspaces determined by π). Define the relation � by x � y ⇐⇒ y − x ∈ K. The interval
is then

[a, b] = {x | x− a ∈ K ∧ b− x ∈ K} = (a +K) ∩ (b−K).

If the endpoints have some coordinates infinite, then the interval is either a +K (if b 6∈ Rd) or b−K (if
a 6∈ Rd) or Rd (if neither endpoint is in Rd).

The simplest, coordinate-wise ordering, can be obtained with K chosen to be the orthant with xi ≥
0, i = 1, . . . , d. Then

(9) x � y ⇐⇒ xi ≤ yi, i = 1, . . . , d.
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Directional medians in Rd

Theorem 4. Let � be a partial order in Rd
such that conditions (I1)–(I3) hold. Let µ be a probability

measure on Rd and let J be a family of intervals with respect to a partial order �, with the property that

(10) µ(J) >
1

2
, for each J ∈ J .

Then the intersection of all intervals from J is a non-empty compact interval.

The compact interval claimed in the Theorem 4 can be, in analogy to one dimensional case taken as a
definition of the median induced by the partial order �:

(11) {Medµ}� :=
⋂

J=[a,b]: µ(J)>1/2

J.

Let V be the family of all closed intervals with respect to some partial order � that satisfies conditions
(I1)–(I3) and let U be the family of their complements. Assuming that the condition (C1) holds:

(C1) for every x ∈ Rd there is a U ∈ U so that x ∈ U ,

we find, via Lemma 1, that the level sets Sα with respect to the depth function D(x;µ,U) can be expressed
as

Sα(µ,U) =
⋂

V ∈V,µ(V )>1−α

V.

Hence, D(x;µ,U) ≥ 1/2 for all x ∈ {Medµ}�.

Directional median has the following properties:√
It is a compact interval.√
It is the set of all points x with the property that D(x;µ,U) ≥ 1

2
.

X It is affine invariant set.
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Convex sets and halfspaces

Recall: D(x;µ,U) = inf{µ(U) | x ∈ U ∈ U};
It is natural to have a convex center of a distribution, hence sets in V should be convex. Further, sets

in U should not be bounded; otherwise the depth at x could be equal to µ({x}).

(C1) for every x ∈ Rd there is a U ∈ U so that x ∈ U .

(C ′2) D(x;P,U) > 0 for at least one x ∈ Rd and

(C ′′2 ) lim
‖x‖→+∞

D(x;P,U) = 0

Theorem 5. Let µ be any probability measure on Borel sets of Rd. Let V be any family of closed convex
sets in Rd, and let U be the family of their complements. Assume that conditions (C1) and (C ′′2 ) hold.
Then the condition (C ′2) also holds, and there exists a point x ∈ Rd with D(x;µ,U) ≥ 1

d+1
.

(Extension of results in Donoho and Gasko (1992), Rousseeuw and Ruts (1999))

Example: For any d > 1 there is a probability distribution µ such that the maximal Tukey’s
depth is exactly 1/(d+ 1).

Let A1, . . . , Ad+1 be points in Rd such that they do not belong to the same hyperplane (i.e. to any
affine subspace of dimension less than d), and suppose that µ({Ai}) = 1

d+1
for each i = 1, 2, . . . , d + 1.

Let S be a closed d-dimensional simplex with vertices at A1, . . . , Ad+1, and let x ∈ S. If x is a vertex
of S, then there exists a closed halfspace H such that x ∈ H and other vertices do not belong to H;
then D(x) = µ(H) = 1/(d + 1). Otherwise, let Sx be a d-dimensional simplex with vertices in x and d
points among A1, . . . , Ad+1 that make together an affinely independent set. Then for Sx and the remaining
vertex, say A1, there exists a separating hyperplane π such that π ∩ Sx = {x} and A1 6∈ π. Let H be a
halfspace with boundary π, that contains A1. Then also D(x) = µ(H) = 1/(d + 1). So, all points x ∈ S
have D(x) = 1/(d+ 1). Points x outside of S have D(x) = 0, which is easy to see. So, the maximal depth
in this example is exactly 1/(d+ 1).
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Equivalence of depth functions

Theorem 6. Let V be a collection of closed convex sets and U the collection of complements of all sets in
V. For each V ∈ V, consider a representation

(12) V =
⋂
α∈AV

Hα,

where Hα are closed subspaces and AV is an index set. Let

HV = {Hc
α + x | α ∈ AV , x ∈ Rd}

be the collection of closures of complements of halfspaces Hα and their translations. Further, let

H =
⋃
V ∈V

HV .

If for any H ∈ H there exists at most countable collection of sets Vi ∈ V, such that

(13) V1 ⊆ V2 ⊆ · · · and
◦
H=

⋃
Vi,

then

D(x;µ,U) = D(x;µ,H) = D(x;µ,
◦
H), for every x ∈ Rd,

where
◦
H is the family of open halfspaces from H.

Two important particular cases:

a) Let V be the family of closed intervals with respect to the partial order defined with a convex cone
K. Then

D(x;µ,U) = D(x;µ,H),

where U is the family of complements of sets in V and H is the family of all tangent halfspaces to
K, and their translations.

In particular, if V is the family of intervals with respect to the coordinate-wise partial order,
then the corresponding depth function is the same as the depth function generated by halfspaces
with borders parallel to the coordinate hyperplanes.

b) Let H be the family of all closed halfspaces, and let Uc,Uk and Ub be families of complements of
all closed convex sets, compact convex sets and closed balls, respectively. Then

D(x;µ,H) = D(x;µ,Uc) = D(x;µ,Uk) = D(x;µ,Ub).
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Tukey’s median

The center of a distribution with respect to the family of all halfspaces in Rd has the following properties:√
It is a compact convex set.

X It is the set of all points x with the property that D(x;µ,U) ≥ 1
2
.√

It is affine invariant set.
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Class of suitable functions: C-functions

Definition 0.1. A function f : Rd 7→ R will be called a C-function with respect to a given family V of
closed subsets of Rd, if for every t ∈ R, f−1((−∞, t]) ∈ V or is empty set.

EXAMPLES:

• If V is the family of all closed convex sets in Rd, then the class of corresponding C-functions is
precisely the class of lower semi-continuous quasi-convex functions, i.e., functions f that have the
property that f−1((−∞, t]) is a closed set for any t ∈ R and

f(λx+ (1− λ)y) ≤ max{f(x), f(y)}, λ ∈ [0, 1], x, y ∈ Rd.

In particular, every convex function on Rd is a C-function with respect to the class of all convex
sets.
• A function f is a C-functions with respect to a family of closed intervals (with respect to some

partial order in Rd), if and only if

{x ∈ Rd | f(x) ≤ t} = [a, b], for some a, b ∈ Rd
.

It is not clear if this condition can be replaced with some other, easier to check, as it was done
in the first case.
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Jensen’s inequality for level sets

Theorem 7. Let V be a family of closed subsets of Rd, and let U be the family of their complements.
Assume that conditions (C1) and (C2) hold with a given probability measure µ. Let α > 0 be such that the
level set Sα = Sα(µ,U) is nonempty, and let f be a C-function with respect to V.

Then for every m ∈ Sα we have that

(14) f(m) ≤ Q1−α,

where Q1−α is the largest quantile of order 1− α for µf . �

Corollary 1. (Jensen’s inequality for ”Tukey’s median”). Let f be a lower semi-continuous and quasi-
convex function on Rd, and let µ be an arbitrary probability measure on Borel sets of Rd. Suppose that
the depth function with respect to halfspaces reaches its maximum αm on the set C(µ) (”Tukey’s median
set”). Then for every m ∈ C(µ),

(15) f(m) ≤ Q1−αm ,

where Q1−αm is the largest quantile of order 1− αm for µf .

EXAMPLE (the bound is sharp): Let A,B,C be non-collinear points in the two dimensional plane,
and let H be the collection of open halfplanes. Let l(AB) be the line determined by A and B. Let H1 be
the closed halfspace that does not contain the interior of the triangle ABC and has l(AB) for its boundary,
and let H2 be its complement. Define a function f by

f(x) = e−d(x,l(AB)) if x ∈ H1 , f(x) = ed(x,l(AB)) if x ∈ H2,

where d(·, ·) is euclidean distance. Then f(A) = 1, f(B) = 1 and f(C) > 1, and f is a convex function.
Now suppose that µ assigns mass 1/3 to each of the points A,B,C. The center C(µ,H) of this distribution
is the set of points of the triangle ABC, with αm = 1/3. Hence, for m ∈ C(µ,H), f(m) takes all values in
[1, f(C)]. On the other hand, quantiles for µf of the order 2/3 are points in the closed interval [1, f(C)];
hence the most we can state is that f(m) ≤ f(C), with f(C) being the largest quantile of order 2/3. �
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Jensen’s inequality for directional medians

Theorem 8. Let V be a family of closed intervals with respect to a partial order in Rd, such that conditions
(I1)–(I3) are satisfied. Let {Medµ} be the median set of a probability measure µ with respect to the chosen
partial order, and let f be a C-function with respect to the family V. Then for every M ∈ Med {µf}, there
exists an m ∈ {Medµ}, such that

(16) f(m) ≤M,

or equivalently, min f({Medµ}) ≤ min{Medµf}. Further, for every m ∈ {Medµ},

(17) f(m) ≤ max{Medµf},
or, equivalently, sup f({Medµ}) ≤ max{Medµf}.
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TWO EXAMPLES

For a d-dimensional random variable X with expectation EX and MedX = EX, we may use both
classical Jensen’s inequality f(EX) ≤ E f(X) or one of inequalities derived above, provided that f is a
convex C-function and that E f(X) exists. It can happen that the upper bound in terms of medians or
quantiles is lower than E f(X). To illustrate the point, consider univariate case, with X ∼ N (0, 1) and
f(x) = (x−2)2. Then the classical Jensen’s inequality with means gives 4 ≤ 5. Since here Med (X−2)2 =
4.00032 (numerically evaluated), the inequality f(EX) ≤ Med f(X) is sharper. Of course, if E f(X) does
not exist, the median alternative is the only choice.

Let a and b are points in Rd, and let ‖ · ‖ be usual euclidean norm. Since the function

x 7→ ‖x− a‖2 − ‖x− b‖2

is affine, it is a C-function for the halfspace depth. Let m be a point in the center of a distribution µ, and
let αm be the value of the depth function in the center. Let X be a d-dimensional random variable on some
probability space (Ω,F , P ) with the distribution µ. Consider the function f(x) = ‖x − a‖2 − ‖x −m‖2.
Then we have that 0 ≤ ‖m− a‖2 ≤ Q1−αm , which implies that P (f(X) ≥ 0) ≥ αm, or, equivalently,

(18) P (‖X −m‖ ≤ ‖X − a‖) ≥ αm for any a ∈ Rd.

The expression on the left hand side of (18) is known as Pitman’s measure of nearness; in this case it
measures the probability that X is closer to m than to any other chosen point a. For distributions with
αm = 1

2
, (18) means that each point in ”Tukey’s median set” is a best non-random estimate of X (or, a

most representative value) in the sense of Pitman’s criterion, with the euclidean distance as a loss function.
The analogous result in one dimensional case is well known.
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