MICHIGAN STATE UNIVERSITY

Department of Statistics and Probability

COLLOQUIUM

Gustavo Didier

Mathematics Department Tulane University

Probabilistic and inferential aspects of selfsimilarity in the multivariate and multiparameter settings

Tuesday, November 26, 2013 10:20am – 11:10am Refreshments 10:00am C405 Wells Hall

Abstract

Scaling phenomena are pervasive in nature and in data. A stochastic process is said to be self-similar (s.s.) when its law scales according to a power 0 < H < 1, the so-called the Hurst parameter. An example of a self-similar process is the classical Brownian motion. Self-similarity is presently used to model biological diffusion, Internet data traces, water levels of rivers, and many other phenomena of interest.

Self-similarity in higher dimension presents new challenges. These include the theoretical consequences of matrix-scaling, non-identifiability, and their impact on inferential pursuits. In this talk, we will give a broad view of related probabilistic and inferential issues in multidimensional settings. We will describe recent developments for multivariate Gaussian self-similar processes and their extension to the multiparameter (random fields) case, the so-named operator fractional Brownian fields (OFBFs). The analysis will draw upon harmonizable integral representations; the latter will allow us to characterize the symmetry groups and (an) isotropy of OFBFs. We will also discuss a wavelet-based inferential method for multivariate self-similarity.

To request an interpreter or other accommodations for people with disabilities, please call the Department of Statistics and Probability at 517-355-9589.