COLLOQUIUM

Department of Statistics and Probability Michigan State University

Davar Khoshnevisan University of Utah

On the Chaotic Character of Some Parabolic Stochastic PDEs

Tuesday, April 12, 2011 A405 Wells Hall 10:20 a.m. - 11:10 a.m. Refreshments: 10:00 a.m.

Abstract

Summary: We consider a nonlinear stochastic heat equation $\partial_t u = (1/2)\partial_{xx}u + \sigma(u)\eta$, where η denotes space-time white noise in dimension (1+1), and σ is Lipschitz continuous. We establish that, at every fixed time t > 0, the global behavior of the solution depends in a critical matter on the structure of the initial function u_0 : Under suitable technical conditions on u_0 and σ , $\sup_{|x| < R} u_t(x)$ remains bounded as $R \to \infty$ when u_0 has compact support. Whereas with probability one, $\sup_{|x| < R} u_t(x) \ge const \cdot (R)^{1/6}$ when u_0 is bounded uniformly away from zero. The mentioned sensitivity to the initial data of the stochastic heat equation is a way to state that the solution to the stochastic heat equation is *chaotic* at fixed times, well before the onset of intermittency.

Time permitting, we will also discuss: (1) What happens if the forcing term has spatial correlations; and (2) More detailed growth estimates for special families of nonlinearities σ . In particular, we describe the high-level oscillations of "the solution" to the so-called KPZ equation of Kardar, Parisi, and Zhang (1986).

This is joint work with Daniel Conus, Mathew Joseph, and Shang-Yuan Shiu.

To request an interpreter or other accomodations for people with disabilities, please call the Department of Statistics and Probability at 517-355-9589.