COLLOQUIUM

Department of Statistics and Probability Michigan State University

Don Edwards University of South Carolina

Closed Sequential and Multistage Inference with Binary Response

Tuesday, November 16, 2010 A405 Wells Hall 10:20 a.m. - 11:10 a.m. Refreshments: 10:00 a.m.

Abstract

The talk considers closed sequential or multistage sampling, with or without replacement, from a lot of N items, where each item can be identified as defective (in error, tainted, etc.) or not. The goal is inference on the proportion π of defectives in the lot, or equivalently on the number of defectives in the lot $D=N\pi$. Until just a few years ago, inference on π was typically done approximately (even with a fixed sample size) - binomial for hypergenometric,normal or Poisson for binomial, Monte-Carlo determined boundaries and/or inference, etc. In this paper we show that exact inference on π using closed (bounded) sequential or multistage procedures with general pre-specified elimination boundaries is completely tractable and not at all inconvenient using modern statistical software. Relevant theory is provided, and functions for this purpose written in R (www.R-project.org) are demonstrated. Our focus is on frequentist inference, but exact Bayesian approaches are also readily available. Examples provided are (1) a sharpening of Wald's (1947) SPRT used in industrial acceptance sampling; (2) two-stage sampling for auditing Medicare healthcare providers; and (3) Risk limited sequential procedures for election audits.

Keywords: binomial; hypergeomeric; Pascal's triangle; Centers for Medicare and Medicaid Services (CMS); probe samples; risk-limited election audits; precinct sampling

To request an interpretor or other accommodations for people with disabilities, please call the Department of Statistics and Probability at 517-355-9589.