
STT 872, 867-868 Fall Preliminary Examination
Tuesday, August 18, 2020

12:30 - 5:30 pm

INSTRUCTIONS:
1. This examination is closed book. Every statement you make must be substantiated. You

may do this either by quoting a theorem/result and verifying its applicability or by proving things
directly. You may use one part of a problem to solve the other part, even if you are unable to solve
the part being used. A complete and clearly written solution of a problem will get a more favorable
review than a partial solution.

2. You must start solution of each problem on a separate page. Be sure to put the number
assigned to you on the top left corner of every page of your solution. Also please number the pages
with n/m (top right corner), where n is the current page number and m is the total number of
pages, to keep the ordering and to avoid missing any pages during scanning.

3. In ZOOM, the video must be turned on for the whole duration of the exam, while the
microphone must be muted for the whole duration of the exam. There should be no other people
present in the room during the exam. DO NOT use virtual background. The camera should show
a wide angle with you and the desk where your work is visible.

4. If you have questions during the exam (e.g. bathroom break requests) you can send a chat
message in ZOOM to the host. Email/cell phone communication with Tami would be a back-up
method to ZOOM/ D2L if they fail.

5. The exam will last 5 hours. Additional 30 minutes will be allowed to organize the paper
solution (write your assigned number and the page number (n/m) on each page), scan it and upload
to D2L. Submit your solution as a PDF file. Before the submission, make sure the PDF is clearly
readable and it contains all your answers (check on your laptop). Failing to do so may result in
substantial loss of points. Keep your paper solution until the examination result is out. If you run
into any upload issues, email your solutions to Tami directly.

6. Please refrain from discussing the exam in any way before the results are made available.



1. Let X1, · · · , Xn are i.i.d. B(a, b), i.e. the common density has the support [0, 1], where it is
proportional to xa(1− x)b, a > 0, b > 0. Suppose a = b.

(a) (3 pts) Find a minimal sufficient statistic for a.
(b) (3 pts) Is the statistic in part 1(a) complete?
(c) (3 pts) Find the MLE of a.
(d) (3 pts) Find the asymptotic distribution of the MLE.

2. Let X1, · · · , Xn be a sample from the Poisson(λ) distribution truncated on the left at 0.

(a) (4 pts) Find the UMVU of λ. Hint: (eλ − 1)n =
∑∞

k=0
n!λk

k!
Ck,n where Ck,n are Stirling’s

number of the second kind.
(b) (4 pts) Find the MLE of λ and its asymptotic variance.
(c) (3 pts) Find the Cramer-Rao lower bound for the variance of unbiased estimators of λ.
(d) (2 pts) Do the UMVU or the MLE attain their information lower bound?

3. Consider estimation of unknown parameters θ1, · · · , θp based on data X1, · · · , Xp that are
independent with Xi ∼ U(0, θi), i = 1, · · · , p under the squared error loss L(θ, d) =

∑p
i=1(θi − di)2.

(a) (4 pts) Following a Bayesian approach, model the unknown parameters as random variables
Θ1, · · · ,Θp which are i.i.d. and absolutely continuous with a common density

xλ2I(0,∞)(x)e−λx.

Find the Bayes estimators for Θ1, · · · ,Θp.
(b) (3 pts) Suggest an empirical estimate of λ based on the sample average X̄.
(c) (4 pts) Compute the risk of the empirical Bayes estimate.

4. Consider testing for H0 : θ = 0 versus H1 : θ 6= 0 based on a single observation X from
N(θ, 1). Using the apparent symmetry of this testing problem, it seems natural to base a test on
Y = |X|.

(a) (3 pts) Find densities qθ for Y and show that the distribution for Y depends only on |θ|.
(b) (3 pts) Show that the densities qθ, θ ≥ 0, have monotone likelihood ratios.
(c) (3 pts) Find the uniformly most powerful level α test of H0 versus H1 based on Y .
(d) (4 pts) The uniformly most powerful test ψ∗(Y ) in part 4(c) is not most powerful compared

with tests based on X. Find a level α test ψ(X) with a better power at θ = −1: E−1ψ(X) >
E−1ψ

∗(Y ). What is the difference in power at θ = −1 if α = 5%?

5. Consider the linear regression model

Y = Xβ + ε,

where Y ∈ Rn, X ∈ Rn×p, β ∈ Rp, ε ∈ Rn, and ε′is are independent with E(εi) = 0, var(εi) = σ2.
(Parts (a)(b)(c) are separate problems and not related)

(a) Suppose the observed data is (X̃, Y ) instead of (X, Y ), where X̃ = X + ∆ with ∆ ∈ Rn×p

being the rounding errors when recording the values of the covariates. These errors ∆ are
determined by the actual values X and some consistent rounding rule, thus are (unknown)
constants rather than random variables. Assume both X and X̃ are of full column rank. The
least square estimate is denoted by β̃ = (X̃ ′X̃)−1X̃Y .



(a1) (3 pts) Show that the usual MSE = 1
n−p‖Y − X̃β̃‖

2
2 can be biased for estimating σ2.

(a2) (3 pts) For an unknown linear functional `′β with ` ∈ Rp, the relative bias of `′β̃ as an

estimator of `′β is defined as RB(`′β̃) = |Bias(`′β̃)|/
√

var(`′β̃). Prove that RB(`′β̃) ≤
1
σ

√
β′∆′∆β. How do you interpret the result?

(b) For a given nonempty subset M ⊆ {1, 2, . . . , p}, let β̂M be the OLS based on the variables
indexed by M.

(b1) (4 pts) Compute the expected in-sample prediction error of β̂M, denoted by ΓM. Com-
pute the corresponding leave-one-out cross validation estimate of the prediction error, de-
noted by Γ̂cvM (Hint: The Woodbury matrix identity is (A+UCV )−1 = A−1−A−1U(C−1+
V A−1U)−1V A−1, where A ∈ Rn×n, U ∈ Rn×k, C ∈ Rk×k, V ∈ Rk×n).

(b2) (3 pts) Assume as n→∞, 1
n
X ′X → Σ � 0 and max1≤i≤n x

′
i(X

′X)−1xi → 0 where xi is

the ith row of X. For any given M⊆ {1, 2, . . . , p}, prove that Γ̂cvM
P→ ΓM, as n→∞.

(c) The Lasso estimator is given by

β̂(λ) = arg min
β

1

2
‖Y −Xβ‖2

2 + λ‖β‖1,

where λ > 0 and ‖ · ‖1 is the usual `1 norm. It is further assumed that ε ∼ N (0, σ2In) and σ2

is known.

(c1) (3 pts) We focus on a special orthogonal design case where X ′X = Ip, n = p, and will
use Lasso estimates to solve the following hypothesis testing problem

H0 : β = 0, H1 : β 6= 0.

Consider the Lasso estimate β̂(λ∗) with λ∗ defined as

λ∗ = sup{λ > 0 : β̂(λ) has at least two nonzero components}.

Construct a test statistic based on the SSE difference ‖Y ‖2
2 − ‖Y −Xβ̂(λ∗)‖2

2, and give

the corresponding rejection region
(
Hint: Suppose z1, . . . , zn

i.i.d.∼ N (0, 1) and let v1 ≥
v2 ≥ · · · ≥ vn be the order statistics of |z1|, |z2|, . . . , |zn|. Then v1(v1 − v2)

d→ Exp(1)
)
.

(c2) (4 pts) We focus on the orthogonal design case in which X ′X = Ip. For a given λ > 0,

the Lasso estimate β̂(λ) selects a set of variables M̂ = {1 ≤ j ≤ p : [β̂(λ)]j 6= 0} where

[β̂(λ)]j denotes the jth component of β̂(λ). An important problem is to construct confi-
dence interval after variable selection. Adjusting for the variable selection process, derive
a confidence interval C for β1 + β2 with 1 − α level conditional coverage (conditioning
on the selected variables):

P
(
β1 + β2 ∈ C | M̂ = {1, 2} and [β̂(λ)]1 < 0, [β̂(λ)]2 > 0

)
= 1− α.



(Hint: Denote F
[a,b]

µ,τ2 (x) = P(z ≤ x | a ≤ z ≤ b) where z ∼ N (µ, τ 2); namely, F
[a,b]

µ,τ2 (·) is

the CDF of a N (µ, τ 2) random variable truncated to the interval [a, b]. Use F
[a,b]

µ,τ2 (·) and

the OLS estimate β̂ols1 + β̂ols2 to construct a conditional pivot)

6. Consider the linear mixed model,

Yi = Xiβ + Zibi + εi, i = 1, 2, . . . , N,

where Yi ∈ Rni , Xi ∈ Rni×m, Zi ∈ Rni×k, and all the b′is, ε
′
is are mutually independent. (Parts (a)(b)

are separate problems and not related)

(a) Suppose m = 1, k = 1, and ni = 1, Xi = Zi = 1, bi ∼ N (0, τ 2), εi ∼ N (0, σ2
i ) for all

i = 1, 2, . . . , N . The variances {σ2
i } are assumed to be known. This specified model is called

a meta-analysis model and has important applications for pooling studies in life science.

(a1) (4 pts) Construct a 100(1− α)% confidence interval for τ 2.

(a2) (4 pts) Use Wald test to solve the hypothesis H0 : β = 0, H1 : β 6= 0.

(b) Suppose εi ∼ N(0, σ2Ini
). The classical linear mixed model further assumes bi ∼ N (0, D̃).

However, in many applications like longitudinal study, the data has latent clustering struc-
tures so that it is more appropriate to model the random effects by a mixture of Gaussian
distributions.

(b1) (4 pts) Suppose bi follows a two-component Gaussian mixture distribution with pdf:

f(b) = α · gµ1,D̃(b) + (1− α) · gµ2,D̃(b),

where gµ,Σ(b) = (2π)−
k
2 |Σ|− 1

2 e−
1
2

(b−µ)′Σ−1(b−µ) denotes the pdf of N (µ,Σ), and α ∈ (0, 1)
is the proportion of the first Gaussian component in the distribution. The parameters
of this mixture distribution is (α, µ1, µ2, D̃). With the Gaussian mixture random effects,
is this linear mixed model identifiable? How does it compare with the classical linear
mixed model in terms of model identifiability?

(b2) (4 pts) A growth curve data about 20 girls measures the height of each girl on a yearly
basis from age 6 to 12. Suppose the 20 girls can be clustered into two categories according
to whether the mother is tall or short. Without their mothers’ information, such a
clustering structure is latent. Propose and explain a linear mixed model from (b1) for
this data.

(b3) (4 pts) Detail out the EM algorithm for computing the MLE’s of the parameters under
the linear mixed model specified in (b1).


