
Preliminary Exam: Probability.  

 

Time:  10:00am - 3:00pm, Friday, August 24, 2018. 

 

Your goal should be to demonstrate mastery of probability theory and maturity of thought. Your 

arguments should be clear, careful and complete. 

The exam consists of six main problems, each with several steps designed to help you in the 

overall solution.  

 

Important:  If you cannot solve a certain part of a problem, you still may use its conclusion 

in a later part!  

 

Please make sure to apply the following guidelines: 

 

1. On each page you turn in, write your assigned code number.  Don’t write your name on 

any page. 

 

2. Start each problem on a new page. 

 

 



Prelim in Probability August 2018 

Problem 1.   

Let 𝑍~𝑁(0, 1) and denote by 𝑓𝑍(𝑥), −∞ < 𝑥 < ∞ the density of 𝑍. 

a.    Prove for each 𝑎 < 𝑏  

𝐸(𝑍; 𝑎 < 𝑍 < 𝑏) = 𝑓𝑍(𝑎) − 𝑓𝑍(𝑏).  

 

b.    Let  𝑓, 𝑓′: ℛ → ℛ  be two continuous functions where  𝑓′ is the derivative of 𝑓. Assume that 

there exists a positive integer 𝑘 and a constant 0 ≤ 𝐶 < ∞ so that both  limsup
|𝑥|→∞

|𝑓(𝑥)|

|𝑥|𝑘
≤ 𝐶  and 

limsup
|𝑥|→∞

|𝑓′(𝑥)|

|𝑥|𝑘
≤ 𝐶  hold (In words: 𝑓 and  𝑓′ have at most polynomial growth.) 

(i)  Prove that 𝐸(|𝑓′(𝑍)|) < ∞  and 𝐸(|𝑍𝑓(𝑍)|) < ∞   

(ii) Prove that 𝐸(𝑓′(𝑍)) = 𝐸(𝑍𝑓(𝑍)).  Hint: Use integration by parts. 

 

c. Show how we can get the following 2 identities from part b(ii). 

(i)   𝐸(𝑍𝑛+1) = 𝑛𝐸(𝑍𝑛−1), 𝑛 ≥ 1. 

 (ii)  Let 𝑓, 𝑓′ be as in part b and let 𝑔, 𝑔′ be another pair of continuous functions, 𝑔′ is the 

derivative of 𝑔  and both have at most polynomial growth. Then  

𝐸(𝑓′(𝑍)𝑔(𝑍)) = 𝐸(𝑍𝑓(𝑍)𝑔(𝑍)) −  𝐸(𝑓(𝑍)𝑔′(𝑍))  

 

 

 

 

 

 

 

 

 

 

 



Problem 2. 

Let 𝑍, 𝑍1, 𝑍2, …  be iid sequence of random variables where 𝑍~𝑁(0, 1) and we denote by 𝑓𝑍(𝑥),

−∞ < 𝑥 < ∞ the density of 𝑍.  Also, let 𝑀𝑛 = max
1≤𝑘≤𝑛

{𝑍𝑘}.  

a.  Recall the inequality (
1

𝑥
−

1

𝑥3
) 𝑓𝑍(𝑥) ≤ 𝑃(𝑍 > 𝑥) ≤ (

1

𝑥
) 𝑓𝑍(𝑥), 𝑥 > 0.   

(i). Prove that    𝑃(𝑍 > 𝑥)~(
1

𝑥
) 𝑓𝑍(𝑥)  ,     namely    

𝑃(𝑍>𝑥)

(
1

𝑥
)𝑓𝑍(𝑥) 𝑥→∞

→  1. 

(ii).  Prove that for each 𝑦 ∈ ℛ we have 
𝑃(𝑍>𝑥+

𝑦

𝑥
)

𝑃(𝑍>𝑥) 𝑥→∞
→  𝑒−𝑦.  Hint: use (i). 

b.  Let 𝑎𝑛 satisfy 𝑃(𝑍 > 𝑎𝑛 ) =
1

𝑛
, 𝑛 ≥ 1.  Let 𝑞𝑛(𝑦) = 𝑃 (𝑍 > 𝑎𝑛 +

𝑦

𝑎𝑛
) , 𝑛 ≥ 1. 

(i)  Prove that  (1 − 𝑞𝑛(𝑦))
𝑛

𝑛→∞
→   𝑒−𝑒

−𝑦
, 𝑦 ∈ ℛ.  

 Hint: Show first (by using part a) that    𝑛𝑞𝑛(𝑦)
𝑛→∞
→   𝑒−𝑦.  

(ii)   Prove that  𝑎𝑛( 𝑀𝑛 − 𝑎𝑛)
𝑛→∞
⇒   Y  where 𝐹𝑌(𝑦) = 𝑒

−𝑒−𝑦 , 𝑦 ∈ ℛ.  Hint:  Show that 

 𝑃(𝑎𝑛( 𝑀𝑛 − 𝑎𝑛) ≤ y)
𝑛→∞
→   𝑒−𝑒

−𝑦
, 𝑦 ∈ ℛ. 

 

c. Prove that  𝑀𝑛 − 𝑎𝑛
𝑛→∞
→   0  in probability and conclude that 𝑀𝑛/𝑎𝑛

𝑛→∞
→   1  in probability. 

 

 

 

 

 

 

 

 

 

 

 

 



Problem 3. 

Let  𝑋, 𝑋1, 𝑋2, …  be iid sequence of random variables where ~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(
1

2
) .  Let 

 𝑆𝑛 = ∑
𝑋𝑘

2𝑘
𝑛
𝑘=1 , 𝑛 ≥ 1. 

a.   Prove the following  

(i)  𝑆𝑛  converges a.s. as 𝑛 → ∞.  Denote the limit random variable by 𝑆∞. 

(ii)   𝐸(𝑆𝑛)
𝑛→∞
→   𝐸(𝑆∞)  and  𝑉(𝑆𝑛)

𝑛→∞
→   𝑉(𝑆∞).   Calculate 𝐸(𝑆∞) and 𝑉(𝑆∞). 

b.  Prove that ∏
1+𝑒

𝑖(
𝑡

2𝑘
)

2

𝑛
𝑘=1   converges as 𝑛 → ∞  for each 𝑡 ∈ ℛ.   

c. It is known that  ∏
1+𝑒

𝑖(
𝑡

2𝑘
)

2

∞
𝑘=1 = 

𝑒𝑖𝑡−1

𝑖𝑡
 , 𝑡 ∈ ℛ .  Use this identity to find the distribution of 𝑆∞.   



Problem 4. 

Let (Ω, ℱ, 𝑃) be a probability space that supports a standard Brownian motion {𝐵(𝑡), 0 ≤ 𝑡 ≤ 1}. 

Let ([0, 1], ℬ, 𝜆) be a measure space with ℬ the borel 𝜎-algebra and 𝜆 the Lebesgue measure.  

Let 

 (𝑆 = Ω × [0, 1], 𝒢 = ℱ × ℬ, 𝜇 = 𝑃 ×  𝜆) denote the product of the two spaces.  It is known that 

the function ℎ: S → ℛ   defined by  ℎ(𝜔, 𝑡) = 𝐵𝑡(𝜔) is a measurable function on (𝑆, 𝒢) , so you 

can use this fact without proof.  (It can be easily proved by using the sample continuity of 

Brownian motion. )  

a. Prove that ℎ𝑘, 𝑘 ≥ 0  is integrable on 𝑆, namely prove that ∫ |ℎ𝑘|𝑑𝜇 < ∞
𝑆

.  

b.   Let 𝑋(𝜔) = ∫ 𝐵𝑡(𝜔)𝑑𝑡,   𝜔 ∈ Ω
1

𝑡=0
.   

(i)  Prove (or quote a theorem) that 𝑋 is a random variable, namely it is measurable. 

(ii) Let 𝑠 ∈ [0, 1]. Calculate  𝐸(𝐵𝑠𝑋).  Justify your steps. 

c. Calculate 𝐸(𝑋2).  Hint:  (∫ 𝐵𝑡𝑑𝑡)
1

𝑡=0

2
= (∫ 𝐵𝑠𝑑𝑠)

1

𝑡=0
(∫ 𝐵𝑡𝑑𝑡)
1

𝑡=0
 .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Problem 5.  

Let {𝐵𝑡, 𝑡 ≥ 0} be standard Brownian motion(SBM) and let 𝑋, 𝑋1, 𝑋2, …  be i.i.d. random 

variables with 𝐸(𝑋) = 0 and 𝐸(𝑋2) < ∞. We denote:  𝑆𝑛 = ∑ 𝑋𝑘, 𝑛 ≥ 1
𝑛
𝑘=1 .   

Assume  0 < 𝑇1 < 𝑇2 < ⋯ be a sequence of stopping times( with respect to the 

canonical filtration of SBM) so that  

(1)  𝑆𝑛 = 𝐵𝑇𝑛  in distribution , 𝑛 ≥ 1,   

(2)  {𝑇1, 𝑇2 − 𝑇1, 𝑇3 − 𝑇2…}  are i.i.d sequence, and 

(3)  𝐸(𝑇1) = 𝐸(𝑋
2).  

Remark:  A.  Skorohod proved that a sequence of stopping times with those properties 

always exist.  

a.   Prove that  
𝑇𝑛

𝑛 𝑛→∞
→   𝐸(𝑋2), a.s. 

b. For each 𝑛 ≥ 1 let 𝑊𝑛(𝑡) =
𝐵(𝑛𝑡)

√𝑛
, 𝑡 ≥ 0.  Prove first that 𝑊𝑛  is a SBM  and then 

prove that  𝑊𝑛 (
𝑇𝑛

𝑛
) =

𝑆𝑛

√𝑛
  in distribution. 

c Let {𝐻, 𝑌𝑛, 𝑍𝑛, 𝑛 ≥ 1} be a family of random variables. Prove that if 

 𝑌𝑛 − 𝑍𝑛 
𝑛→∞
→   0, in probability, and 𝑍𝑛

𝑛→∞
⇒   H  then 𝑌𝑛

𝑛→∞
⇒   H  as well. 

d.    Prove that  
𝑆𝑛

√𝑛 𝑛→∞
⇒  N(0, 𝐸(𝑋1

2))  by using parts a, b and c 

Hint:  You need to prove that 𝑊𝑛 (
𝑇𝑛

𝑛
) −𝑊𝑛(𝐸(𝑋1

2))
𝑛→∞
→   0, in probability.   

 

 

 

 

 

 

 

 

 

 



Problem 6. 

Let {𝑋𝑛}, {𝑌𝑛}, {𝑍𝑛} 𝑛 ≥ 0  be  3 sequences of random variables that are  integrable, non-

negative and adapted to the filtration { ℱ𝑛}, 𝑛 ≥ 0. We assume that ∑ 𝑌𝑛
∞
𝑘=1 < ∞, 𝑎. 𝑠. 

a. Prove that ∏ (1 + 𝑌𝑘)
2𝑛

𝑘=1 , 𝑛 ≥ 1 is a non-decreasing sequence of random variables that 

convergences to ∏ (1 + 𝑌𝑘)
2∞

𝑘=1 < ∞ , where all statements are in a.s. sense. 

 

From now we assume:  𝐸ℱ𝑛(𝑋𝑛+1) ≤ 𝑋𝑛(1 + 𝑌𝑛)
2 and 𝐸ℱ𝑛(𝑍𝑛+1) ≤ 𝑍𝑛(1 + 𝑌𝑛)

2, 𝑛 ≥ 0, 𝑎. 𝑠. 

b.(i)      Prove that {
𝑋𝑛

∏ (1+𝑌𝑘)
2𝑛−1

𝑘=1

, ℱ𝑛} , 𝑛 ≥ 1,  is a non-negative SUPERMG sequence. 

(ii)      Prove that {
min(𝑋𝑛,𝑍𝑛)

∏ (1+𝑌𝑘)
2𝑛−1

𝑘=1

, ℱ𝑛} , 𝑛 ≥ 1,  is also a non-negative SUPERMG sequence.  

      Hint for (ii): You need to show that if {𝐻𝑛, ℱ𝑛} and {𝐽𝑛, ℱ𝑛} are both SUPERMG then so 

is {min(𝐻𝑛, 𝐽𝑛), ℱ𝑛}.  

 

c.      Prove that 𝑋𝑛 and min(𝑋𝑛, 𝑍𝑛)  both converges a.s. to a finite limit. 


